簡易檢索 / 詳目顯示

研究生: 林嘉幃
Lin, Chia-Wei
論文名稱: 本體論導引式之知識文件搜尋系統
An Ontology-Guided Knowledge Search System
指導教授: 李昇暾
Li, Sheng-Tun
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 65
中文關鍵詞: 知識管理資訊檢索自組織映射圖(SOM)潛在語意索引模式(LSI)本體論資訊過載
相關次數: 點閱:159下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   知識經濟時代中,除了資本、設備、土地與自然資源之外,人力資源以及其所擁有的知識與技術成了組織成功發展的重要關鍵,因此知識文件的創造、流通、加值、再創造等過程,也受到了矚目與重視。然而資訊爆炸往往造成了資訊過載的困擾,傳統上關鍵字比對的資訊檢索方式雖然具有簡單以及符合使用者習慣等特性,但是對於領域知識架構不夠清楚的一般使用者而言,很難下達有效的查詢關鍵字進行查詢,且這樣的查詢方式並不能反映出文件所代表的概念。本研究為了解決知識工作者在搜尋知識文件時,此一困擾,提出以本體論的資訊技術,建構整個領域相關知識的概念式知識架構,透過本體論的推理,提供知識工作者知識概念與知識概念之間的關聯性,用以導引使用者構思出有效的查詢關鍵字詞。再者,即使在查詢關鍵字正確的情形之下,依然可能發生所搜尋到與知識概念相關性較低的窘境,因此本研究將針對查詢所得的結果,利用群集化演算法將其予以分群,同時依據各群文件所探討的主題給予一個合適的標題名稱,輔助知識工程師,有效率地過濾掉相關性較低的知識文件,以迅速取得使用者所需的知識。

    none

    摘要 I 致謝 II 目錄 III 圖目錄 V 表目錄 VI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究限制 3 1.4 研究流程 3 第二章 文獻探討 6 2.1 本體論(ONTOLOGY) 6 2.1.1 本體論的概念 6 2.1.2 本體論的種類 7 2.1.3 本體論的實例 8 2.1.4 本體論建置方法論 12 2.1.5本體論建置工具 16 2.2 自組織映射圖(SELF-ORGANIZING MAP,SOM) 17 2.2.1 SOM概念 17 2.2.2 SOM架構 18 2.2.3 SOM演算法 19 2.3 資訊擷取(INFORMATION RETRIEVAL) 21 2.3.1 向量空間模式(Vector Space Model,VSM) 21 2.3.2 潛在語意索引模式(Latent Semantic Indexing,LSI) 26 第三章 研究方法 28 3.1 本體論建置 (ONTOLOGY ENGINEERING) 28 3.1.1 協商階段 29 3.1.2 建置階段 30 3.1.3 本體論儲存庫階段 31 3.1.4 使用階段 32 3.1.5 維護階段 32 3.2 系統架構 32 3.2.1 檢索模組 33 3.2.2 本體論儲存庫模組 38 3.2.3 分群模組 39 3.2.4 貼標籤模組 42 第四章 實作與實驗測試 45 4.1 系統實作 45 4.1.1 系統開發環境 45 4.1.2 本體論建置 46 4.1.3 系統環境介紹 49 4.1.4 系統實作 50 4.2 實驗測試 53 4.2.1 資料蒐集與前置處理 53 4.2.2 實驗設計 55 4.3 討論 60 第五章 結論與建議 61 5.1 結論 61 5.2 未來研究方向 62 參考文獻: 63 一. 英文部分: 63 二. 中文部分: 65

    1.Abecker, A., Bernardi, A., Hinkelmann, K., Kuhn, O., & Sintek, M. (1998). Toward a Technology for Organizational Memory. IEEE Computer Society, 13, 40-48.
    2.Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval. New York. Addison Wesley & ACM Press.
    3.Benjamins, V, R., Fensel, D., Decker, S., & Gomez-Perez, A. (1999). (KA)2:Building Ontologies for the Internet:a mid term Report. International Journal of Human-Computer Studies, 51, 687-712.
    4.Berners-Lee, T., & Fischetti, M. (2000). Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor. IEEE Transactions on Processional Communication, 43, 217-218.
    5.Corcho, O., Fernandez-Lopez, M., & Gomez-Perez, A. (2003). Methodologies, Tools and Languages. Where is Their Meeting Point?. Data & Knowledge Engineering, 46, 41-64.
    6.Ding, Y. (2001). Ontology: The Enabler for the Semantic Web. Journal of Information Science, 27, 377-384.
    7.Edgington, T., Choi, B., Henson, K., Raghu, T, S., & Vinze, A. (2004). Adopting Ontology to Facilitate Knowledge Sharing. Communication of the ACM, 47, 85-90.
    8.Fox, S, M., Barbuceanu, M., Gruninger, M., & Jinxin, L. (1998). An Organization Ontology for Enterprise Modeling. In Simulating Organizations:Computational Models of Institutions and Group. M, Prietula., K, Carley., L, Gasser., (Eds). Menlo Park CA: AAAI/MIT Press. pp. 131-152.
    9.Gao, J., & Zhang, J. (2005). Clustered SVD Strategies in Latent Semantic Indexing. Information Processing and Management, 41, 1051-1063.
    10.Gruber, T, R. (1993). Atranslation Approach to Portable Ontology Specification. Knowledge Acquisition, 5, 199-220.
    11.Hoeft, R, M., Jentsch, F, G., Harper, M, E., Evans, A, W., Bowers, C, A., & Salas, E. (2003). TPL-KATS-Concept Map:a Computerized Knowledge Assessment Tool. Computers in Human Behavior, 19, 653-657.
    12.Husbands, P., Simon, H., & Ding, C. (2005). Term Norm Distribution and its Effects on Latent Semantic Indexing. Information Processing and Management, 41, 777-787.
    13.Humphreys, B. L., & Lindberg, D. A. B. (1993). The UMLS Project: Making the Conceptual Connection between Users and the Information They Need. Bulletin of the Medical Library Association, 81, 170.
    14.Kohonen, T. (1990). The Self-Organization Map. Pro. IEEE, 78, 1464-1980.
    15.Li, S.-T., & Hsieh, H.-C. (2003). Managing Operation Knowledge for the Metal Industry. Journal of Universal Computer Science, 9, 472-480.
    16.Maedche, A., Motik, B., Stojanovic, L., Studer, R., & Volz, R. (2003). Ontologies for Enterprise Knowledge Management. IEEE Computer Society, 18, 26-33.
    17.Morita, K., Atlam, E., Fuketra, M., Tsuda, K., Onon, M., & Aoe, J. (2004). Word Classification and Hierarchy Using Co-occurrence Word Information. Information Processing & Management, 40, 957-972.
    18.Miller, G, A. (1995). WORDNET: A lexical Database for English. Communications of ACM, 11, 39-41.
    19.Neches, R., Fikes, R., Finin, T., Gruber, T. R., Senator, T., Patil, R & Swartout, W. R. (1991). Enabling Technology for Knowledge Sharing. AI Magazine, 12, 36-56.
    20.Noy, N, F., & McGuinness, D, L. (2001). Ontology Development 101: A Guide to Creating Your First Ontology. Stanford Medical Informatics Technical Report, 1-25.
    21.Salton, G., (1988). Automatic Text Processing. Addison-Wesley Longman Publishing Conference,
    22.Shanks, G.., Tansley, E., & Weber, R. (2003). Using Ontology to Validate Conceptual Models. Communication of ACM, 46, 85-89.
    23.Staab, S., Studer, R., Schunrr, H.-P., & Sure, Y. (2001). Knowledge Process and Ontologies. IEEE Intelligent System, 26-34.
    24.Tai, X., Ren, F., & Kita, K. (2002). An Information Retrieval Model Based on Vector Space Method by Supervised Learning. Information Processing and Management, 38, 749-764.
    25.The University of Karlsruhe. The Karlsruhe Ontology (KAON) tool suite. http://kaon.semanticweb.org/.
    26.Weng, S, S., & Lin, Y, J. (2003). A Study on Searching for Similar Documents based on Multiple Concepts and Distribution of Concepts. Expert System with Applications, 25, 355-368.
    27.Yang, H, C., & Lee, C, H. (2004). A Text Mining Approach on Automatic Generation of Web Directories and Hierarchies. Expert System with Application, 27, 645-663.
    28.Yeh, I., Karp, P, D., Noy, N, F., & Altman, R, B. (2003). Knowledge Acquisition, Consistency Checking and Concurrency Control for Gene Ontology(GO). Bioinformatics, 19, 241-248.
    二. 中文部分:
    1.葉怡成 (2002)。類神經網路模式應用與實作。台北:儒林。
    2.Davenport, T. H., & Prusak, L. (1999)。 Working Knowledge: how organization manage what they know。 台北:中國生產力中心。

    下載圖示 校內:2007-06-22公開
    校外:2007-06-22公開
    QR CODE