| 研究生: |
陳建廷 Chen, Chien-Ting |
|---|---|
| 論文名稱: |
量子非實在性量度與其在量子資訊上的應用 Quantification of non-realistic features and applications to quantum information processing |
| 指導教授: |
李哲明
Li, Che-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 實在性 、量子非實在性 、量子資訊處理 |
| 外文關鍵詞: | Realism, Quantum non-realistic features, Quantum information processing |
| 相關次數: | 點閱:198 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
古典實在性理論無法完全地描述量子狀態,這種量子非實在性已被利用於偵測純然之量子效應,並已被應用於量子資訊處理之中,然而,至今為止還沒有量化量子非實在性的研究方案;本論文先定義一個可被古典實在性理論描述的狀態,並定義一個可使任意狀態轉變成此種狀態的過程,然後以此進一步提出兩種量度來量化量子狀態與過程的量子非實在性,透過這兩種量度,我們整理出任意的量子純態與任意的么正轉換具有最多的量子非實在性,此外,我們研究這兩種量度在量子資訊處理上的應用,例如量測量子通道的量子非實在性以及評估量子邏輯閘的效能,最後,我們亦比較了量子非實在性量度與其他非古典特性的量度,如量子同調性,並指出它們之間的差異性。
Quantum states are not completely described by the classical theory of realism. Such quantum non-realistic features provide tools to detect quantum effects and have applications to quantum information processing. There is, however, no scheme for quantifying non-realistic features. Here we first define a reference state that can be described by the classical realistic theory. A quantum process that changes any states into this reference state is also introduced. We then further propose two measures to quantify the non-realistic features of quantum state and quantum process. With these two novel quantifiers, we show that any pure states and any unitary transformations are the states and the processes of maximal non-realistic features, respectively. Furthermore, we also apply these quantifiers to quantum information processing, such as quantifying non-realistic features of quantum channels and evaluating the performance of quantum gates. Finally, we compare our measures with a quantum coherence quantifier in detail.
[1] H. Kragh, “Quantum Generations: A history of physics in the twentieth century ” Princeton University Press, 2002.
[2] R. P. Feynman, “Simulating physics with computers ” International Journal of Theoretical Physics, vol. 21, pp. 467-488, 1982.
[3] C.-M. Li, Y.-N. Chen, N. Lambert et al., “Certifying single-system steering for quantum-information processing,” Physical Review A, vol. 92, pp. 062310, 2015.
[4] C. H. Bennett, and P. W. Shor, “Quantum information theory,” IEEE Transactions on Information Theory, vol. 44, pp. 2734-2742, 1998.
[5] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Physical Review Letters, vol. 96, pp. 010401, 2006.
[6] M. Ringbauer, B. Duffus, C. Branciard et al., “Measurements on the reality of the wavefunction,” Nature Physics, vol. 11, pp. 249-254, 2015.
[7] M. F. Pusey, J. Barrett, and T. Rudolph, “On the reality of the quantum state,” Nature Physics, vol. 8, pp. 475-478, 2012.
[8] N. D. Mermin, “Is the moon there when nobody looks? Reality and the quantum theory,” Physics Today, vol. 38, pp. 38-47, 1985.
[9] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-Mechanical description of physical reality be considered complete?,” Physical Review, vol. 47, pp. 777-780, 1935.
[10] J. S. Bell, “On the einstein podolsky rosen paradox,” Physics, vol. 1, pp. 195-200, 1964.
[11] Z. Merali, “What is really real?,” Nature, vol. 521, pp. 278-280, 2015.
[12] R. W. Spekkens, “Evidence for the epistemic view of quantum states: A toy theory,” Physical Review A, vol. 75, pp. 032110, 2007.
[13] E. Schrödinger, “Die gegenwärtige situation in der quantenmechanik,” Naturwissenschaften, vol. 23, pp. 823-828, 1935.
[14] J. Barrett, E. G. Cavalcanti, R. Lal et al., “No ψ-epistemic model can fully explain the indistinguishability of quantum states,” Physical Review Letters, vol. 112, pp. 250403, 2014.
[15] C. Branciard, “How ψ-epistemic models fail at explaining the indistinguishability of quantum states,” Physical Review Letters, vol. 113, pp. 020409, 2014.
[16] M. Leifer, “ψ-epistemic models are exponentially bad at explaining the distinguishability of quantum states,” Physical Review Letters, vol. 112, pp. 160404, 2014.
[17] E. Schrödinger, “What is Life?,” Cambridge Univ. Press, 1992.
[18] H. Ollivier, and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Physical Review Letters, vol. 88, pp. 017901, 2001.
[19] R. Horodecki, P. Horodecki, M. Horodecki et al., “Quantum entanglement,” Reviews of Modern Physics, vol. 81, pp. 865-942, 2009.
[20] A. Ishizaki, and Y. Tanimura, “Quantum dynamics of system strongly coupled to low-temperature colored noise bath: reduced hierarchy equations approach,” Journal of the Physical Society of Japan, vol. 74, pp. 3131-3134, 2005.
[21] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, pp. 933-937, 1996.
[22] E. Collini, C. Y. Wong, K. E. Wilk et al., “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature, vol. 463, pp. 644-647, 2010.
[23] G. S. Engel, T. R. Calhoun, E. L. Read et al., “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature, vol. 446, pp. 782-786, 2007.
[24] J. Yuen-Zhou, J. J. Krich, M. Mohseni et al., “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proceedings of the National Academy of Sciences, vol. 108, pp. 17615-17620, 2011.
[25] C.-M. Li, N. Lambert, Y.-N. Chen et al., “Witnessing quantum coherence: from solid-state to biological systems,” Scientific Reports, vol. 2, pp. 885, 2012.
[26] T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Physical Review Letters, vol. 113, pp. 140401, 2014.
[27] M. A. Nielsen, and I. L. Chuang, “Quantum computation and quantum information,” Cambridge Univ. Press, 2010.
[28] F. Schwabl, “Statistical Mechanics,” Springer-Verlag Berlin Heidelberg, pp. 16, 2002.
[29] E. R. Ziegel, “Standard Probability and Statistics Tables and Formulae,” Technometrics, vol. 43, pp. 249-249, 2001.
[30] O. Gühne, and G. Tóth, “Entanglement detection,” Physics Reports, vol. 474, pp. 1-75, 2009.
[31] A. Barenco, C. H. Bennett, R. Cleve et al., “Elementary gates for quantum computation,” Physical Review A, vol. 52, no. 5, pp. 3457-3467, 11/01/, 1995.
[32] R. Raussendorf, and H. J. Briegel, “A one-way quantum computer,” Physical Review Letters, vol. 86, pp. 5188-5191, 2001.
[33] A. M. Childs, E. Farhi, and J. Preskill, “Robustness of adiabatic quantum computation,” Physical Review A, vol. 65, pp. 012322, 2001.
[34] C. H. Bennett, G. Brassard, C. Crépeau et al., “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Physical Review Letters, vol. 70, pp. 1895-1899, 1993.
[35] J. Preskill, “Lecture notes for physics 229: Quantum information and computation,” California Institute of Technology, 1998.
[36] H. J. Carmichael,“Statistical methods in quantum optics, Vol. 2, ” Berlin: Springer, 1999.
[37] V. Vedral, M. B. Plenio, M. A. Rippin et al., “Quantifying entanglement,” Physical Review Letters, vol. 78, pp. 2275-2279, 1997.
[38] E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review, vol. 106, pp. 620-630, 1957.
[39] K. H. Rosen, and K. Krithivasan, “Discrete mathematics and its applications,” McGraw-Hill New York, 1999.
[40] C. H. Bennett, and D. P. DiVincenzo, “Quantum information and computation,” Nature, vol. 404, pp. 247-255, 2000.
[41] H. Azuma, and M. Ban, “Another convex combination of product states for the separable Werner state,” Physical Review A, vol. 73, pp. 032315, 2006.
[42] N. Lambert, C. Emary, Y.-N. Chen et al., “Distinguishing quantum and classical transport through nanostructures,” Physical Review Letters, vol. 105, pp. 176801, 2010.
[43] A. Friedman, “Are the quantum world and the real world the same thing?,” http://www.pbs.org/wgbh/nova/blogs/physics/2015/05/quantum-word-real-world-thing/.
[44] N. Harrigan, and R. W. Spekkens, “Einstein, incompleteness, and the epistemic view of quantum states,” Foundations of Physics, vol. 40, pp. 125-157, 2010.
[45] T. Norsen, “Einstein’s boxes,” American Journal of Physics, vol. 73, pp. 164-176, 2005.
[46] M. S. Byrd, and N. Khaneja, “Characterization of the positivity of the density matrix in terms of the coherence vector representation,” Physical Review A, vol. 68, pp. 062322, 2003.
[47] J. L. O'Brien, G. J. Pryde, A. Gilchrist et al., “Quantum process tomography of a controlled-NOT gate,” Physical Review Letters, vol. 93, pp. 080502, 2004.
[48] C. Monroe, D. M. Meekhof, B. E. King et al., “Demonstration of a fundamental quantum logic gate,” Physical Review Letters, vol. 75, pp. 4714-4717, 1995.
[49] “IBM Quantum Experience,” http://www.research.ibm.com/quantum/.
[50] A. Fedorov, L. Steffen, M. Baur et al., “Implementation of a Toffoli gate with superconducting circuits,” Nature, vol. 481, pp. 170-172, 2012.
[51] T. Monz, K. Kim, W. Hänsel et al., “Realization of the quantum Toffoli gate with trapped ions,” Physical Review Letters, vol. 102, pp. 040501, 2009.
[52] F. G. S. L. Brandão, and G. Gour, “Reversible framework for quantum resource theories,” Physical Review Letters, vol. 115, pp. 070503, 2015.
[53] X. Xing, “Protecting qubit–qutrit entanglement from amplitude damping decoherence via weak measurement and reversal,” Physica Scripta, vol. 89, pp. 065102, 2014.
[54] A. Winter, and D. Yang, “Operational resource theory of coherence,” Physical Review Letters, vol. 116, pp. 120404, 2016.