簡易檢索 / 詳目顯示

研究生: 莊博皓
Chuang, Po-Hao
論文名稱: 模型參考適應性PID應用於四旋翼無人機控制器設計
Design of Model Reference Adaptive PID Controller Applied to Quadrotor UAV
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 158
中文關鍵詞: 無人機模型參考適應性控制樹莓派PIDLyapunov理論
外文關鍵詞: UAV, Quadrotor, MRAC, Lyapunov Stability Theory, Adaptive Control
相關次數: 點閱:79下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,探討了模型參考適應性PID控制器(MRAC-PID)在四旋翼無人機上的應用和性能。此研究目的是優化傳統PID控制器,特別是對抗外部干擾與不同系統類型的情況下,而首先會先建立了無人機的數學模型。
    在控制器設計方面,本篇將傳統的PID控制方法與適應性調整機制結合,利用Matlab Simulink模擬來評估控制器對連續干擾、高斯雜訊以及突波等外部信號干擾的反應,並利用標準二階系統的響應當作參考模型與四旋翼無人機模型做對照來調整系統參數。
    經過模擬之數據比較後,適應性PID控制器相比於傳統PID控制器,適應性PID控制器在各種干擾情形下最多能夠減少平均誤差量42%、平均最大超越量則能有效的減少最多96%,透過模擬與數據分析可以證明適應性控制器能夠優化傳統PID控制。
    本研究中透過嵌入式系統實時修改飛行參數,並利用一系列的實驗來測試在模擬階段所提出的方法,而實驗結果顯現,適應性控制器在實際無人機系統中能夠減少平均誤差量50%,而平均最大超越量也能夠減少62%,也透過實驗確保理論與應用之間的關聯性與實用性。

    In this study, the application and performance of Model Reference Adaptive PID Controllers (MRAC-PID) on quadrotor drones is explored. The main objective of this research is to optimize the performance of traditional PID controllers, particularly in combating external disturbances and across different system types. Initially, a mathematical model of the drone and developed a control strategy based on MRAC is established, enabling the control system to automatically adjust the PID parameters in response to environmental changes and system dynamics.
    In terms of controller design, traditional PID control methods with adaptive adjustment mechanisms is conbined, utilizing Matlab Simulink simulations to assess the controller's response to continuous disturbances, Gaussian noise, and impulse signal interferences. It is also used the response of a standard second-order system as a reference model to adjust the system parameters of the quadrotor model, ensuring that the adaptive controller could achieve ideal response outputs under various operational conditions.
    Simulation results are shown that the adaptive PID controller has a better response in terms of disturbance rejection and response speed compared to traditional PID controllers. Through dynamic adjustment of PID parameters, the adaptive controller is more effective in handling external disturbances, maintaining system stability and performance. Additionally, it is investigated the impact of the learning rate on control performance, finding that the appropriate setting of the learning rate is crucial for achieving optimal control effects.
    By interfacing with embedded systems and various libraries to modify flight parameters, and by validating the simulation results through practical experiments, this study demonstrates the effectiveness and feasibility of model reference adaptive PID controllers in the application of quadrotor drones, and provides valuable insights for the development and optimization of future drone control systems.

    中文摘要 I 目錄 V 表目錄 VIII 圖目錄 X 符號表 XVIII 致謝 XX 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 文獻回顧 3 1.3.1 四旋翼無人機建模與PID控制 3 1.3.2 適應性控制理論 5 1.3.3 MRAC模型參考適應性控制理論 6 第二章 建立無人機數學模型 8 2.1 無人機之座標係: 8 2.2 無人機之座標轉換 9 2.3 無人機方程式 13 2.3.1 無人機直線運動方程式 14 2.3.2 無人機旋轉運動方程式 15 2.3.3 無人機升力、力矩與馬達轉速間之關係 16 2.3.4 建立無人機受控場模型 17 第三章 控制器之建立 22 3.1 控制器介紹: 22 3.2 建立PID控制器 23 3.3 MRAC適應性控制器 26 3.3.1 參考模型(Reference Model) 27 3.3.2 參數調整器(Parameters Regulator) 29 3.3.3 本章結論 45 第四章 模擬結果與分析 46 4.1 PID參數初始值對於無人機輸出響應 46 4.1.1 當初始值Kp=0,Ki=0,Kd=0: 49 4.1.2 當初始值Kp=10,Ki=0,Kd=0: 49 4.2 學習增益權重值對於無人機的輸出響應 63 4.3 無人機重量與酬載變化對無人機的輸出響應 69 4.4 無人機受到外在干擾的輸出響應 87 第五章 實驗系統與架設 112 5.1 無人機系統 112 5.1.1 無人機機架型式 112 5.1.2 馬達 113 5.1.3 螺旋槳 113 5.1.4 電子變速器 114 5.1.5 遙控設備與接收機 115 5.1.6 飛行控制器 116 5.1.7 地面站軟體與飛控韌體 117 5.2 嵌入式系統與程式 118 5.2.1 嵌入式系統-Raspberry Pi 4 118 第六章 實驗結果與討論 121 6.1 傳統PID控制器與適應性控制器下無人機系統響應比較 121 6.2 適應性PID控制器在不同初始值下之無人機系統響應 124 6.3 適應性PID控制器在不同學習增益權重值下之無人機系統響應 127 6.4 單次飛行中無人機姿態的變化與參數之變化 129 第七章 結論與未來工作 132 7.1 結論 132 7.2 未來工作 133 參考文獻 135

    [1] Bora Erginer and Erdinç Altuğ , “Modeling and PD Control of a Quadrotor VTOL Vehicle” ,Proceedings of the 2007 IEEE Intelligent Vehicles Symposium Istanbul, Turkey, June 13-15 (2007)
    [2] Jun Li and Yuntang Li ,“Dynamic Analysis and PID Control for a Quadrotor,” IEEE International Conference on Mechatronics and Automation, Beijing, China, 2011, pp. 573-578, doi: 10.1109/ICMA.2011.5985724. (2011)
    [3] Ioan Doré Landau, Rogelio Lozano, Mohammed M’Saad, Alireza Karimi, “Adaptive Control Algoritms, Analysis and Applications - Second Edition”, ISBN:978-0-85729-663-4 (2011)
    [4] Anton Glushchenko, Konstantin LastochKin, “Neural Network-based Direct Model Reference Adaptive Control of Quadrotor Attitude”, 978-1-6654-6586-1 ©2022 IEEE (2022)
    [5] Matthias Schreier, “Modeling and Adaptive Control of a Quadrotor” DOI: 10.1109/ICMA.2012.6282874 (2014)
    [6] H. Balaska and S. Ladaci, “Fractional order output-feedback tube-MRAC design for a class of fractional order transfer functions with unknown parameters”, International Journal of Automation and Control 2023 Vol. 17 Issue 3 Pages 287-305(2023)
    [7] Y. Ding, X. G. Ren, X. C. Zhang, X. Liu and X. Wang, “Multi-Phase Focused PID Adaptive Tuning with Reinforcement Learning”, Electronics 2023 Vol. 12 Issue 18(2023)
    [8] Y. F. Hanna, A. A. Khater, M. El-Bardini and A. M. El-Nagar, “Real time adaptive PID controller based on quantum neural network for nonlinear systems”, Engineering Applications of Artificial Intelligence 2023 Vol. 126(2023)
    [9] L. Garza, A. Vargas and R. Cruz, “MRAC-based Fault Tolerant Control of a SISO Real Process Application”, IEEE Latin America Transactions 2015 Vol. 13 Issue 8 Pages 2545-2550(2015)
    [10] R. Dey, S. K. Jain and P. K. Padhy, “Robust closed loop reference MRAC with PI compensator”, Iet Control Theory and Applications 2016 Vol. 10 Issue 18 Pages 2378-2386(2016)
    [11] H. Fu, X. Chen, W. Wang and M. Wu, “MRAC for unknown discrete-time nonlinear systems based on supervised neural dynamic programming”, Neurocomputing 2020 Vol. 384 Pages 130-141(2020)
    [12] M. Manimozhi and A. A. Rajathi, “Design of MRAC and modified MRAC for DC motor speed control”, International Journal of Nonlinear Analysis and Applications 2021 Vol. 12 Pages 1863-1871(2021)
    [13] X. D. Lv, G. M. Zhang, Z. Q. Bai, X. X. Zhou, Z. H. Shi and M. X. Zhu, “Adaptive Neural Network Global Fractional Order Fast Terminal Sliding Mode Model-Free Intelligent PID Control for Hypersonic Vehicle's Ground Thermal Environment”, Aerospace 2023 Vol. 10 Issue 9(2023)
    [14] Ardupilot, http://ardupilot.org/
    [15] Mission Planner, http://ardupilot.org/planner/

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE