簡易檢索 / 詳目顯示

研究生: 曹家華
Cao, Jia-hua
論文名稱: 奈米金粒子在水耕苜蓿中的分布與產狀
Distribution and Occurrence of Nano-gold in Hydroponic Alfalfa
指導教授: 楊懷仁
Yang, Huai-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系碩士在職專班
Department of Earth Sciences (on the job class)
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 60
中文關鍵詞: SEMICP-MS小麥苜蓿奈米金
外文關鍵詞: nano-gold, wheat, SEM, ICP-MS, alfalfa
相關次數: 點閱:60下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當物質在奈米尺度下,其物理、化學與生物特性將不同於個別的原子、分子或塊材(bulk)所具有之原始特性與價值。其中奈米金粒子在近年來在醫藥科技(drug delivery)、生化感應器(bio-chemical sensors)、DNA標記(DNA labeling)、植物生長礦業(phytomining)、觸酶反應(catalysis)、比色技術(colorimetric technology)、環境修護(environmental remediation)、半導體(semi-conductors)科技、光電伏特(photovoltaic)等的發展皆扮演重要角色。
    本研究利用活性植物體(live plants)的生物還原作用(bioreduction),在不添加任何複合劑(complexing agent)或營養劑的情況下,將小麥與苜蓿種子栽種於含有不同濃度的HAuCl4培養液中約14天,再以感應耦合電漿質譜儀分析植株根、莖、葉中的金含量,並配合掃瞄式電子顯微鏡觀察根部奈米金粒子的產狀與顆粒大小。本實驗培育出不具毒性可直接食用的小麥與苜蓿,作為未來開發具療效食材的基礎。
    結果顯示苜蓿與小麥的根、莖、葉中,以根部對金具有最佳的吸收能力,且苜蓿吸收金的能力優於小麥。當HAuCl4培養液濃度增加時,苜蓿各部位組織的金含量也隨著增加,但培養液濃度到達100 ppm時,苜蓿即無法繼續生長。本研究發現的奈米金粒子主要分布於50 ppm與20 ppm含金培養液栽種的苜蓿根部中,共有三種產狀:突狀不規則顆粒、根部組織內、根毛表面上。
    突狀組織內含金及以銅、矽及鈣為主成分之顆粒,其粒徑約<500 nm,這些粒子可能以更細微的粒子為核,而逐漸聚集為較大的顆粒。根部組織內所觀察到的奈米金粒子推測可能在植株生長過程中運輸水分時,金粒子沉澱於運輸導管上所形成。而根部組織表面上的奈米金粒子可能因根部長時間與含金培養液接觸,使培養液中的金粒子沉澱於根部表面。

    關鍵詞:奈米金、苜蓿、小麥、ICP-MS、SEM

    The nano-sized particles have physical, chemical, and biological properties differ significantly from those with visually identifiable sizes. In recent nano-technology developments, nano-gold has been applied on drug delivery, bio-chemical sensors, DNA labeling, phytomining, catalysis, colorimetric technology, environmental remediation, semi-conductors, and photovoltaic. Therefore, the demands on nano-gold increase dramatically.
    In this study, experiments were carried out to characterize the distribution and occurrence of nano-gold in live plants. Alfalfa and wheat were cultivated in solutions containing various concentrations of HAuCl4 without the addition of complexing agents and nutrients. After a cultivation period of 14 days, the plants were separated into root, stem, and leave parts for ICP-MS analysis to determine the concentration of gold. Then, the ones with high gold concentration were subjected to SEM observation for size and occurrence of gold particles. Being cultivated in a non-toxicity environment, products from these experiments have a potential to be used as “medical food”.
    It is found that nano-gold is more abundant in alfalfa than in wheat. For both alfalfa and wheat, roots contain significantly higher nano-gold contents than stems, and leaves. The gold abundances in alfalfa and wheat increase with increasing HAuCl4 concentration in the cultivation solutions. However, alfalfa sprouting was prohibited in solutions with HAuCl4 concentration higher than 100 ppm.
    Three types of nano-gold occurrence were observed in alfalfa roots: they are particles within protuberant and normal tissues and particles on the surface of fibrils. The nano-gold particles within the protuberant tissues are < 500 nm and contain trace amounts of Cu, Si, and Ca, which might be nuclides for the growth of nano-gold particles. The particles in the normal root tissues were possibly precipitated during transportation of gold solution in plants. It is inferred that the nano-gold particles on the fibrils were concentrated by adsorption since the fibrils were in contact with HAuCl4 solution during the whole course of cultivation.

    Keywords: nano-gold, alfalfa, wheat, ICP-MS, SEM

    中文摘要..................................................I 英文摘要.................................................II 致謝.....................................................IV 目錄......................................................V 表目錄..................................................VII 圖目錄.................................................VIII 第一章、 緒論.............................................1 1.1 前言................................................1 1.2文獻探討.............................................5 1.2.1以無活性植物體製成奈米金屬........................5 1.2.2 活性植物體內的奈米金屬...........................9 1.2.3 提升植物體吸收金屬的能力........................10 1.3研究動機與目的......................................15 第二章、研究方法.........................................16 2.1 實驗流程...........................................16 2.1.1 流程概覽.......................................16 2.1.2 活性植物的栽種.................................19 2.1.3 ICP-MS樣品製程.................................21 2.1.4 SEM樣品製程....................................23 2.2 分析儀器...........................................24 2.2.1 感應耦合電漿質譜儀(ICP-MS)...................24 2.2.2 掃瞄式電子顯微鏡(SEM)........................26 第三章、 結果與討論......................................27 3.1 苜蓿與小麥中的金含量...............................27 3.1.1低金培養液(<1 ppm)栽種的小麥與苜蓿中金濃度在各 組織內的變化及其原因............................27 3.1.2高金培養液(>1 ppm)栽種的苜蓿中金濃度在各組織內 的變化及其原因..................................30 3.1.3 酒精脫水對金含量的影響.........................35 3.1.4 回收率.........................................38 3.2 苜蓿中奈米金粒子的產狀.............................42 3.3 苜蓿中的金含量與其他元素分析.......................49 第四章、結論.............................................52 參考文獻.................................................54

    中文期刊文獻
    朱仁佑、陳春弟、汪天仁、闕銘宏、葉吉田(2008),奈米金屬顆粒在薄膜光伏特元件的應用。工業材料雜誌,第261期,第143-149頁。
    阮國棟、吳婉怡、汪芷嫣(2005),奈米科技與環境保護。工業材料雜誌,第220期,第163-166頁。
    汪建民(1998)材料分析。中國材料科學學會,共760頁。
    董慕愷、陳郁文(2005),奈米金觸媒。科學發展,第390期,第46-49頁。
    葉顓銘、陳少燕、黃定鼎、黃浩仁(2004),清理重金屬污染的植物。科學發展,第380期,第45-49頁。
    蔡朝淵(2007),奈米金在奈米生物技術與奈米醫學上的應用。國立成功大學基礎醫學研究所博士論文,共70頁。

    英文期刊文獻
    Andrew, T.H., Roza B., 2007. On the formation and extent of uptake of silver nanoparticles by live plants. Journal of Nanoparticle Research Vol. 10, No. 4, pp. 691-695.
    Anderson, C.N.W., Brooks, R.R., Stewart, R.B., Simcock, R., 1998. Harvesting a corp of gold in plants. Nature 395, 553-554.
    Armendariz, V., Herrera, I., Peralta-Videa, J.R., Jose-Yacaman, M., Troiani, H., Santiago P., Gardea-Torresdey, J.L., 2004. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology.
    Armendariz, V., Herrera, I., Peralta-Videa, J.R., Jose-Yacaman, M., Troiani, H., Santiago, P., Gardea-Torresdey, J.L., 2004a. Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. J. Nanoparticle Res. 6, 377-382.
    Armendariz, V., Jose-Yacaman, M., Duarte-Moller, A., Peralta-Videa, J.R., Troiani, H., Herrera, I., Gardea-Torresdey, J.L., 2004. HRTEM characterization of gold nanoparticles produced by wheat biomass. Rev. Mex. Fis. 50 (Suppl. 1), 7-11.
    Ascencio, J.A., Ricon, A.C., Canizal, G., 2005. Synthesis and theoretical analysis of samarium nanoparticles: Perspectives in nuclear medicine. J. Phys. Chem. B 109 (18), 8806-8812.
    Ascencio, J.A., Mejia, Y., Liu, H.B., Angeles, C., Canizal, G., 2003. Bioreduction synthesis of Eu-Au nanoparticles. Langmuir 19 (14), 5882-5886.
    Bali, R., Razak, N., Lumb, A., Harris, A.T., 2006. The synthesis of metallic nanoparticles inside live plants. International Conference on Nanoscience and Nanotechnology, 224-227.
    Bunge, S.D., Boyle, T.J., Headley, T.J., 2003. Synthesis of coinage-metal nanoparticles from Mesityl precursors. Nano Lett. 3 (7), 901-905.
    Dalal, S. L., 1979. Specificity of silver nitrate reduction by plant cells. Natl. Acad. Sci. 2(4), 127-129.
    Egorova, E.M., Revina, A.A., 2000. Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloid. Surface A 168 (1), 87-96.
    Esumi, K., Kameo, A., Suzuki, A., Torigoe, K., Yoshimura , T,. Koide, Y., Shosenji, H., 2001. Preparation of gold nanoparticles using 2-vinylpyridine telomers possessing multihydrocarbon chains as stabilizer. Colloid Surface A 176 (2-3), 233-237.
    Gardea-Torresdey, J.L., Rodriguez, E., Parsons, J.G., Peralta-Videa, J.R., Meitzner, G., Cruz-Jimenez, G., 2005. Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent. Anal. Bioanal. Chem. 382, 347-352.
    Gardea-Torresdey, J.L., Rodriguez, E., Parsons, J.G., Peralta-Videa, J.R., Meitzner, G., Cruz-Jimenez, G., 2004. Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent.
    Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H., Jose-Yacaman, M., 2003. Alflafa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 19, 1357-1361.
    Gardea-Torresdey, J.L., Dokken, K., Tiemann, K.J., Parsons J.G., Ramos, J., Pingitore, N.E., Gamez, G., 2002a. Infrared and X-ray absorption spectroscopic studies on the mechanism of chromium(III) binding to alfalfa biomass. Microchem. J. 71 (2-3), 157-166.
    Gardea-Torresdey, J., Hejazi, M., Tiemann, K., Parsons, J.G., Duarte-Gardea, M., Henning, J., 2002b. Use of hop(Humulus lupulus)agricultural by-products for the reduction of aqueous lead(III)environmental health hazards. J. Hazard. Mater. 91 (1-3), 95-112.
    Gardea-Torresdey, J.L., Parsons, J.G., Gomez, E., Peralta-Videa, J.R., Troiani, H.E., Santiago, P., Jose-Yacaman, M., 2002c. Formation of Au nanoparticles inside live alfalfa plants. Nano Lett. 2, 397-401.
    Gardea-Torresdey, J.L., Tiemann, K.J., Parsons, J.G., Gamez, G., Herrera, I., Jose- Yacaman, M., 2002d. XAS investigations into the mechanism(s) of Au(III) binding and reduction by alfalfa biomass. Microchem. J. 71 (2-3), 193-204.
    Gardea-Torresdey, J.L., Parsons, J.G., Gomez, E., Peralta-Videa, J.R., Troiani, H.E., Santiago, P., Jose-Yacaman, M., 2001. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano. Lett. Vol. 2, No. 4, 397-401.
    Gardea-Torresdey, J.L., Tiemann, K.J., Gamez, G., Dokken, K., Cano-Aguilera, I., Furenlid, L.R., Renner, M.W., 2000. Reduction and accumulation of gold(III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH, and temperature dependence. Environ. Sci. Technol. 34 (20), 4392-4396.
    Gardea-Torresdey, J.L., Tiemann, K.J., Gamez, G., Dokken, K., Tehuacanero, S., Jose- Yacaman, M., 1999. Gold nanoparticles obtained by bioprecipitation from gold(III) solutions. J. Nanoparticle Res. 1, 397-404.
    Gomez, E., 2002. The nanoparticle formation and uptake of precious metals by living alfalfa plants. MS Thesis. El Paso, University of Texas, p. 81.
    Han, M.Y., Quek, C.H., Huang, W., Chew, C.H., Gan, L.M., 1999. A simple and effective chemical route for the preparation of uniform nonaqueous gold colloids. Chem. Mater. 11 (4), 1144-1147.
    Herrera, I., Gardea-Torresdey, J.L., Tiemann, K.J., Peralta-Videa, J.R., Armendariz, V., Parsons, J.G., 2003. Binding of silver(I) ions by alfalfa biomass(Medicago sativa):Batch pH, time, temperature, and ionic strength studies. J. Hazard. Subst. Res. 4 (1), 1-16.
    Iwase, E., 1928. The preparation of red-gold sols by using as reducing agents the extracts of fresh leaves and plants. Kolloid Zeitschrift 44, 42-43.
    Juewen Liu and Yi Lu, 2003. Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. Journal of Fluorescence Vol. 14, No. 4, pp.343-354.
    Karamushka, V.I., Ul’berg, Z.R., Gruzina, T.G., 1990. The role of membrane processes in Au(III)and Au(0)accumulation by bacteria. Ukr. Biokhim. Zh. 62 (1), 76-82.
    Lopez, M.L., Parsons, J.G., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2005. An XAS study of the binding and reduction of Au(III) by hop biomass. Microchem. J. 81 (1), 50-56.
    Macrae, I.C., Edwards, J.F., 1972. Adsorption of colloidal iron by bacteria. Appl. Microbiol. 24 (5), 819-823.
    Martin, C.R., Mitchell, D.T., 1998. Nanomaterials on analytical chemistry. Anal. Chem. 9, 322A-327A.
    Meltzer, S., Resch, R., Loel, B.E., Thompson, M.E., Madhukar, A., Requicha, A.A.G., Will, P., 2001. Fabrication of nanostructures by hydroxylamine seeding of gold nanoparticle templates. Langmuir 17 (5), 1713-1718.
    Moiseenko, V.G., Kuimova, N.G., Makeeva, T.B., Pavlova, L.M., 1999. Formation of biogenic gold particles by fungi. Dok. Akad. Nauk 364 (4), 535-537.
    Molisch, H., 1921. The microchemistry of plants. XVI. The reduction of silver by chlorophyll granules. Ber. Botan. Ges. 39, 136-139.
    Nagai, S., 1951. The reduction of silver nitrate by plant cell. II. Nature and responsibility of substances which cause the reduction. J. Inst. Polytech., Osaka City University, Series D: Biology, 2, 1-8.
    Parsons J.G., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2007. Use of plants in biotechnology : Synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Concepts and Applications in Environmental Geochemistry, ch 21, 463-485.
    Parsons, J.G., Gardea-Torresdey, J.L., Tiemann, K.J., Gamez, G., 2003. Investigation of trace level binding of PtCl6 and PtCl4 to alfalfa biomass(Medicago sativa)using Zeeman graphite furnace atomic absorption spectrometry. Anal. Chim. Acta 478 (1), 139-145.
    Peralta, J.R., Gardea-Torresdey, J.L., Tiemann, K.J., Gomez, E., Arteaga, S., Rascon, E., Parsons, J.G., 2001. Uptake and effects of five metals on seed germination and plant growth in alfalfa(Medicago sativa L.). Bull. Environ. Contam. Toxicol. 66, 727-734.
    Shankar, S.S., Rai, A., Ahmad, A., Sastry, M., 2005. Controlling the optical properties of lemon grass extract synthesized gold nanoparticles and potential application in infrared-absorbing optical coatings. Chem. Mater. 17, 556-572.
    Shankar, S.S., Rai, a., Ahmad, A., Sastry, M., 2004. Rapid synthesis of Au, Ag, and biometallic Au core-Ag shell nanoparticles using Neem(Azadirachta indica)leaf broth. J. Colloid Interf. Sci. 275 (2), 496-502.
    Shankar, S.S., Ahmad, A., Pasricha, R., Sastry, M., 2003a. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822-1826.
    Shankar, S.S., Ahmad, A., Sastry, M., 2003b. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. 19 (6), 1627-1631.
    Tanaka, K., 1999. Nanotechnology towards the 21st century. Thin Solid
    Films 341, 120-125.
    Voigt, S., 1914. Biological investigations of colloidal silver with a new method for the demonstration of very fine metal deposits in organs. Deut. Med. Wochenschr. 40, 483-484.
    Vorobyova, S.A., Sobal, N.S., Lesnikovich A.I., 2001. Colloid gold, prepared by interphase reduction. Colloid Surface A 176 (2-3), 273-277.
    Westcott, S.L., Oldenburg, S.J., Lee, T.R., Halas, N.J.,1998. Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surface. Langmuir 14 (19), 5396-5401.
    Williams, M., 1918. Absorption of gold from colloidal solutions by fungi. Ann. Bot. 32, 531-534.
    Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J.F., Willner, I., 2003. Nanowiring of Redox
    Enzymes by a Gold Nanoparticle. Science 299, 1877-1881.
    Yates, B.J., Myre, E., Breetz, D., Dionysiou, D.D., 2005. Biotemplating of nanoparticles for environmental applications using phytomining techniques. American Chemical Society, 230 National Meeting, Washington, DC, Preprints of extended Abstracts, 45 (2), pp. 740-742.
    Zhou, Y., Wang, C. Y., Zhu, Y.R., Chen, Z.Y., 1999. A Novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem. Mater. 11 (9), 2310-2312.

    參考網站
    United States Departments of Agriculture。http://plants.usda.gov/index.html
    奈米科學網。http://nano.nchc.org.tw/main.php

    下載圖示 校內:2014-07-17公開
    校外:2014-07-17公開
    QR CODE