| 研究生: |
余孟晟 Yu, Meng-Cheng |
|---|---|
| 論文名稱: |
已知的鈣通道調節劑米羅加巴林和GV-58在電壓門控鈉電流上可能的修飾作用 Investigations on the possible modification of mirogabalin and GV-58, two known regulators of Cav channels, on voltage-gated sodium current |
| 指導教授: |
吳勝男
Wu, Sheng-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 米羅加巴林 、GV-58 、電壓門控鈉通道 、神經性疼痛 、蘭伯特-伊頓肌無力綜合徵 |
| 外文關鍵詞: | Mirogabalin, GV-58, voltage-gated sodium channels, neuropathic pain, Lambert–Eaton myasthenic syndrome |
| 相關次數: | 點閱:66 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
米羅加巴林(Mirogabalin)是一種電壓門控的鈣離子(Cav)通道阻滯劑,已被證實會影響該通道的 α2δ-1 亞基。而 GV-58 則被認為是 N-和 P/Q 型鈣離子電流的激活劑。然而,米羅加巴林和 GV-58 對各種類型的細胞膜離子通道的大小、門控和/或滯後效應的影響程度仍未得到徹底探索。可能的情況是,它們不僅可以阻止電壓門控的鈣離子(Cav)通道,還可以調節其他類型的離子通道。因此,我打算研究米羅加巴林和 GV-58 對電壓門控鈉離子通道電流(INa)的影響。首先,我使用標準膜片鉗電流記錄來檢測老鼠腦垂腺腫瘤細胞(GH3)中存在的 INa是否受添加不同濃度的米羅加巴林/ GV-58 影響。其次,我在老鼠腦垂腺腫瘤細胞(GH3)中使用一系列去極化脈衝,以顯示米羅加巴林/ GV-58 對瞬時鈉離子電流 INa(T)失活的恢復效應。最後,我使用兩種不同的電壓鉗協議來檢測它們對復甦型鈉離子電流(INa(R))和窗口型鈉離子電流(INa(W))的影響。根據我們的實驗結果,我發現米羅加巴林和 GV-58 在濃度依賴性方面差別地影響了 INa 的峰值(瞬時 INa(T))和持續(延遲 INa(L))。此外,米羅加巴林延長了一系列去極化脈衝中 INa(T)失活的恢復時間。相反,GV-58 緩解了失活速率。最後,米羅加巴林/GV-58 有效地抑制/增加了由上升或下降的電壓鉗協議引發的復甦型鈉離子電流(INa(R))和窗口型鈉離子電流(INa(W))。總之,細胞暴露於米羅加巴林/GV-58 不僅可以影響鈣離子(Cav),還可以調節鈉離子通道(Nav)。
Mirogabalin is a voltage-gated Ca2+ (Cav) channels blocker which is recognized to affect α2δ-1 subunit of the channel. And GV-58 is recognized to be an activator of N- and P/Q-type Ca2+ currents. However, to what extent both mirogabalin and GV-58 modifies the magnitude, gating, and/or hysteresis of various types of plasmalemmal ionic currents remains largely unexplored. It would be possible that they might not only block Cav channels, but also regulate other types of ionic channels. Therefore, we intended to investigate the effect of mirogabalin and GV-58 on voltage-gated sodium current (INa) occurs. First, we used standard patch-clamp current recordings to detect the INa residing in pituitary tumor (GH3) cells with or without the addition of different mirogabalin/GV-58 concentrations. Second, we used a train of depolarizing pulses in GH3 cell in order to show the effect of mirogabalin/GV-58 on recovery of INa(T) inactivation. Finally, we used two different voltage-clamp protocols to recognize their effect on resurgent sodium current (INa(R)) and window sodium current (INa(W)). According to our experimental results, we found that mirogabalin and GV-58 were differentially effective at modifying the peak (transient, INa(T)) and sustained (late, INa(L)) components of INa in a concentration-dependent manner. Moreover, mirogabalin prolonged the recovery of INa(T) inactivation in a train of depolarizing pulses. GV-58, on the contrary, relieved the inactivation rate. At last, mirogabalin/GV-58 effectively suppressed/increased INa(W) and INa(R) evoked by ascending or descending Vramp. As above, cell exposure to mirogabalin/GV-58 could not only affect Cav channels, but also regulate Nav channel.
Amir, R., C. E. Argoff, G. J. Bennett, T. R. Cummins, M. E. Durieux, P. Gerner, M. S. Gold, F. Porreca and G. R. Strichartz (2006). "The role of sodium channels in chronic inflammatory and neuropathic pain." J Pain 7(5 Suppl 3): S1-29.
Amran, M. S., N. Homma and K. Hashimoto (2003). "Pharmacology of KB-R7943: a Na+-Ca2+ exchange inhibitor." Cardiovasc Drug Rev 21(4): 255-276.
Baba, M., N. Matsui, M. Kuroha, Y. Wasaki and S. Ohwada (2020). "Long-term safety and efficacy of mirogabalin in Asian patients with diabetic peripheral neuropathic pain." J Diabetes Investig11(3): 693-698.
Black, B. J., R. Atmaramani and J. J. Pancrazio (2017). "Spontaneous and Evoked Activity from Murine Ventral Horn Cultures on Microelectrode Arrays." Front Cell Neurosci 11: 304.
Brown, K., J. Mendell, S. Ohwada, C. Hsu, L. He, V. Warren, V. Dishy and H. Zahir (2018). "Tolerability, pharmacokinetics, and pharmacodynamics of mirogabalin in healthy subjects: Results from phase 1 studies." Pharmacol Res Perspect 6(5): e00418.
Brustovetsky, T., M. K. Brittain, P. L. Sheets, T. R. Cummins, V. Pinelis and N. Brustovetsky (2011). "KB-R7943, an inhibitor of the reverse Na+ /Ca2+ exchanger, blocks N-methyl-D-aspartate receptor and inhibits mitochondrial complex I." Br J Pharmacol 162(1): 255-270.
Buraei, Z., M. Anghelescu and K. S. Elmslie (2005). "Slowed N-type calcium channel (CaV2.2) deactivation by the cyclin-dependent kinase inhibitor roscovitine." Biophys J 89(3): 1681-1691.
Calandre, E. P., F. Rico-Villademoros and M. Slim (2016). "Alpha(2)delta ligands, gabapentin, pregabalin and mirogabalin: a review of their clinical pharmacology and therapeutic use." Expert Rev Neurother 16(11): 1263-1277.
Chang, W. T. and S. N. Wu (2021). "Characterization of Direct Perturbations on Voltage-Gated Sodium Current by Esaxerenone, a Nonsteroidal Mineralocorticoid Receptor Blocker." Biomedicines 9(5).27
Chen, B. S., Y. C. Lo, H. Peng, T. I. Hsu and S. N. Wu (2009). "Effects of ranolazine, a novel antianginal drug, on ion currents and membrane potential in pituitary tumor GH(3) cells and NG108-15 neuronal cells." J Pharmacol Sci 110(3): 295-305.
Chen, P. C., J. S. Ruan and S. N. Wu (2018). "Evidence of Decreased Activity in IntermediateConductance Calcium-Activated Potassium Channels During Retinoic Acid-Induced Differentiation in Motor Neuron-Like NSC-34 Cells." Cell Physiol Biochem 48(6): 2374-2388.
Chuang, T. H., H. Y. Cho and S. N. Wu (2021). "The Evidence for Sparsentan-Mediated Inhibition of I(Na) and I(K(erg)): Possibly Unlinked to Its Antagonism of Angiotensin II or Endothelin Type a Receptor." Biomedicines 10(1).
Deeks, E. D. (2019). "Mirogabalin: First Global Approval." Drugs 79(4): 463-468.
Domon, Y., N. Arakawa, T. Inoue, F. Matsuda, M. Takahashi, N. Yamamura, K. Kai and Y. Kitano (2018). "Binding Characteristics and Analgesic Effects of Mirogabalin, a Novel Ligand for the α(2)δ Subunit of Voltage-Gated Calcium Channels." J Pharmacol Exp Ther 365(3): 573-582.
England, S. and D. Rawson (2010). "Isoform-selective voltage-gated Na(+) channel modulators as next-generation analgesics." Future Med Chem 2(5): 775-790.
Fernandez, J. M., A. P. Fox and S. Krasne (1984). "Membrane patches and whole-cell membranes: a comparison of electrical properties in rat clonal pituitary (GH3) cells." J Physiol 356: 565-585.
Finnerup, N. B., R. Kuner and T. S. Jensen (2021). "Neuropathic Pain: From Mechanisms to Treatment." Physiol Rev 101(1): 259-301.
Frenz, C. T., A. Hansen, N. D. Dupuis, N. Shultz, S. R. Levinson, T. E. Finger and V. E. Dionne (2014). "NaV1.5 sodium channel window currents contribute to spontaneous firing in olfactory sensory neurons." J Neurophysiol 112(5): 1091-1104.
Fux, J. E., A. Mehta, J. Moffat and J. D. Spafford (2018). "Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations." Front Physiol 9: 1406.28
Herrington, J., R. C. Stern, A. S. Evers and C. J. Lingle (1991). "Halothane inhibits two components of calcium current in clonal (GH3) pituitary cells." J Neurosci 11(7): 2226-2240.
Hutmacher, M. M., B. Frame, R. Miller, K. Truitt and D. Merante (2016). "Exposure-response modeling of average daily pain score, and dizziness and somnolence, for mirogabalin (DS-5565) in patients with diabetic peripheral neuropathic pain." J Clin Pharmacol 56(1): 67-77.
Jansen, M., S. Warrington, V. Dishy, S. Ohwada, L. Johnson, K. Brown and H. Ishizuka (2018). "A Randomized, Placebo-Controlled, Double-Blind Study of the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Single and Repeated Doses of Mirogabalin in Healthy Asian Volunteers." Clin Pharmacol Drug Dev 7(6): 661-669.
Jukič, M., D. Kikelj and M. Anderluh (2014). "Isoform selective voltage-gated sodium channel modulators and the therapy of pain." Curr Med Chem 21(2): 164-186.
Kato, J., N. Matsui, Y. Kakehi, E. Murayama and S. Ohwada (2020). "Long-term safety and efficacy of mirogabalin in Asian patients with postherpetic neuralgia: Results from an open-label extension of a multicenter randomized, double-blind, placebo-controlled trial." Medicine (Baltimore) 99(36): e21976.
Kesner, V. G., S. J. Oh, M. M. Dimachkie and R. J. Barohn (2018). "Lambert-Eaton Myasthenic Syndrome." Neurol Clin 36(2): 379-394.
Khaliq, Z. M., N. W. Gouwens and I. M. Raman (2003). "The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study." J Neurosci 23(12): 4899-4912.
Kharatmal, S. B., J. N. Singh and S. S. Sharma (2015). "Rufinamide Improves Functional and Behavioral Deficits via Blockade of Tetrodotoxin-Resistant Sodium Channels in Diabetic Neuropathy." Curr Neurovasc Res 12(3): 262-268.
Kim, K., T. Isu, R. Kokubo, N. Iwamoto, D. Morimoto, M. Kawauchi and A. Morita (2021). "Therapeutic Effect of Mirogabalin on Peripheral Neuropathic Pain due to Lumbar Spine 29
Disease." Asian Spine J 15(3): 349-356.
Kitano, Y., S. Wakimoto, S. Tamura, K. Kubota, Y. Domon, N. Arakawa, M. Saito, B. Sava and B. Buisson (2019). "Effects of mirogabalin, a novel ligand for the α₂δ subunit of voltage-gated calcium channels, on N-type calcium channel currents of rat dorsal root ganglion culture neurons." Pharmazie 74(3): 147-149.
Kozako, T., A. Kawachi, S. B. Cheng, S. Kuchiiwa, T. Motoya, S. Nakagawa and K. Yamada (2002). "Role of the vestibular nuclei in endothelin-1-induced barrel rotation in rats." Eur J Pharmacol 454(2-3): 199-207.
Kuo, P. C., Z. H. Kao, S. W. Lee and S. N. Wu (2020). "Effects of Sesamin, the Major Furofuran Lignan of Sesame Oil, on the Amplitude and Gating of Voltage-Gated Na(+) and K(+) Currents." Molecules 25(13).
Lai, M. C., S. N. Wu and C. W. Huang (2020). "The Specific Effects of OD-1, a Peptide Activator, on Voltage-Gated Sodium Current and Seizure Susceptibility." Int J Mol Sci 21(21).
Lai, M. C., S. N. Wu and C. W. Huang (2020). "Telmisartan, an Antagonist of Angiotensin II Receptors, Accentuates Voltage-Gated Na(+) Currents and Hippocampal Neuronal Excitability." Front Neurosci 14: 902.
Lai, M. C., S. N. Wu and C. W. Huang (2022). "Rufinamide, a Triazole-Derived Antiepileptic Drug, Stimulates Ca(2+)-Activated K(+) Currents While Inhibiting Voltage-Gated Na(+) Currents." Int J Mol Sci 23(22).
Lampert, A., A. O. O'Reilly, P. Reeh and A. Leffler (2010). "Sodium channelopathies and pain." Pflugers Arch 460(2): 249-263.
Lewis, A. H. and I. M. Raman (2014). "Resurgent current of voltage-gated Na(+) channels." J Physiol 592(22): 4825-4838.
Liang, M., T. B. Tarr, K. Bravo-Altamirano, G. Valdomir, G. Rensch, L. Swanson, N. R. DeStefino, C. M. Mazzarisi, R. A. Olszewski, G. M. Wilson, S. D. Meriney and P. Wipf (2012). "Synthesis 30
and biological evaluation of a selective N- and p/q-type calcium channel agonist." ACS Med Chem Lett 3(12): 985-990.
Lin, Y. C., Y. C. Lai, T. H. Lin, Y. C. Yang and C. C. Kuo (2022). "Selective stabilization of the intermediate inactivated Na(+) channel by the new-generation anticonvulsant rufinamide." Biochem Pharmacol 197: 114928.
Liu, M. and J. N. Wood (2011). "The roles of sodium channels in nociception: implications for mechanisms of neuropathic pain." Pain Med 12 Suppl 3: S93-99.
Lo, Y. K., S. N. Wu, C. T. Lee, H. F. Li and H. T. Chiang (2001). "Characterization of action potential waveform-evoked L-type calcium currents in pituitary GH3 cells." Pflugers Arch 442(4): 547-557.
Matteson, D. R. and C. M. Armstrong (1984). "Na and Ca channels in a transformed line of anterior pituitary cells." J Gen Physiol 83(3): 371-394.
Meijer, L., A. Borgne, O. Mulner, J. P. Chong, J. J. Blow, N. Inagaki, M. Inagaki, J. G. Delcros and J. P. Moulinoux (1997). "Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5." Eur J Biochem 243(1-2): 527-536.
Meriney, S. D., T. B. Tarr, K. S. Ojala, M. Wu, Y. Li, D. Lacomis, A. Garcia-Ocaña, M. Liang, G. Valdomir and P. Wipf (2018). "Lambert-Eaton myasthenic syndrome: mouse passive-transfer model illuminates disease pathology and facilitates testing therapeutic leads." Ann N Y Acad Sci 1412(1): 73-81.
Morris, C. E., P. A. Boucher and B. Joós (2012). "Left-shifted nav channels in injured bilayer: primary targets for neuroprotective nav antagonists?" Front Pharmacol 3: 19.
Navarro, M. A., A. Salari, J. L. Lin, L. M. Cowan, N. J. Penington, M. Milescu and L. S. Milescu (2020). "Sodium channels implement a molecular leaky integrator that detects action potentials and regulates neuronal firing." Elife 9.31
Quattrocolo, G., K. Dunville and M. J. Nigro (2021). "Resurgent Sodium Current in Neurons of the Cerebral Cortex." Front Cell Neurosci 15: 760610.
Rühlmann, A. H., J. Körner, R. Hausmann, N. Bebrivenski, C. Neuhof, S. Detro-Dassen, P. Hautvast, C. A. Benasolo, J. Meents, J. P. Machtens, G. Schmalzing and A. Lampert (2020). "Uncoupling sodium channel dimers restores the phenotype of a pain-linked Na(v) 1.7 channel mutation." Br J Pharmacol 177(19): 4481-4496.
Scheuer, T. (2011). "Regulation of sodium channel activity by phosphorylation." Semin Cell Dev Biol22(2): 160-165.
Simasko, S. M. (1994). "A background sodium conductance is necessary for spontaneous depolarizations in rat pituitary cell line GH3." Am J Physiol 266(3 Pt 1): C709-719.
Smith, R. D. and A. L. Goldin (1997). "Phosphorylation at a single site in the rat brain sodium channel is necessary and sufficient for current reduction by protein kinase A." J Neurosci 17(16): 6086-6093.
So, E. C., S. N. Wu, Y. C. Lo and K. Su (2018). "Differential regulation of tefluthrin and telmisartan on the gating charges of I(Na) activation and inactivation as well as on resurgent and persistent I(Na) in a pituitary cell line (GH(3))." Toxicol Lett 285: 104-112.
Stojilkovic, S. S., J. Tabak and R. Bertram (2010). "Ion channels and signaling in the pituitary gland." Endocr Rev 31(6): 845-915.
Suter, M. R., G. Kirschmann, C. J. Laedermann, H. Abriel and I. Decosterd (2013). "Rufinamide attenuates mechanical allodynia in a model of neuropathic pain in the mouse and stabilizes voltage-gated sodium channel inactivated state." Anesthesiology 118(1): 160-172.
Taddese, A. and B. P. Bean (2002). "Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons." Neuron 33(4): 587-600.
Tan, J. and D. M. Soderlund (2011). "Actions of Tefluthrin on Rat Na(v)1.7 Voltage-Gated Sodium Channels Expressed in Xenopus Oocytes." Pestic Biochem Physiol 101(1): 21-26.32
Tarr, T. B., D. Lacomis, S. W. Reddel, M. Liang, G. Valdomir, M. Frasso, P. Wipf and S. D. Meriney (2014). "Complete reversal of Lambert-Eaton myasthenic syndrome synaptic impairment by the combined use of a K+ channel blocker and a Ca2+ channel agonist." J Physiol 592(16): 3687-3696.
Tarr, T. B., W. Malick, M. Liang, G. Valdomir, M. Frasso, D. Lacomis, S. W. Reddel, A. Garcia-Ocano, P. Wipf and S. D. Meriney (2013). "Evaluation of a novel calcium channel agonist for therapeutic potential in Lambert-Eaton myasthenic syndrome." J Neurosci 33(25): 10559-10567.
Tarr, T. B., G. Valdomir, M. Liang, P. Wipf and S. D. Meriney (2012). "New calcium channel agonists as potential therapeutics in Lambert-Eaton myasthenic syndrome and other neuromuscular diseases." Ann N Y Acad Sci 1275: 85-91.
Tarr, T. B., P. Wipf and S. D. Meriney (2015). "Synaptic Pathophysiology and Treatment of LambertEaton Myasthenic Syndrome." Mol Neurobiol 52(1): 456-463.
Tyagi, S., T. R. Bendrick, D. Filipova, S. Papadopoulos and R. A. Bannister (2019). "A mutation in Ca(V)2.1 linked to a severe neurodevelopmental disorder impairs channel gating." J Gen Physiol 151(6): 850-859.
Urbano, F. J., E. S. Piedras-Rentería, K. Jun, H. S. Shin, O. D. Uchitel and R. W. Tsien (2003). "Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q-type Ca2+ channels." Proc Natl Acad Sci U S A 100(6): 3491-3496.
Vega, A. V., J. L. Espinosa, A. M. López-Domínguez, L. F. López-Santiago, A. Navarrete and G. Cota (2003). "L-type calcium channel activation up-regulates the mRNAs for two different sodium channel alpha subunits (Nav1.2 and Nav1.3) in rat pituitary GH3 cells." Brain Res Mol Brain Res 116(1-2): 115-125.
Venugopal, S., S. Seki, D. H. Terman, A. Pantazis, R. Olcese, M. Wiedau-Pazos and S. H. Chandler (2019). "Resurgent Na+ Current Offers Noise Modulation in Bursting Neurons." PLoS Comput Biol 15(6): e1007154.33
Wang, G. K. and S. Y. Wang (1992). "Inactivation of batrachotoxin-modified Na+ channels in GH3 cells. Characterization and pharmacological modification." J Gen Physiol 99(1): 1-20.
Wu, N., C. F. Hsiao and S. H. Chandler (2001). "Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: participants in burst generation." J Neurosci 21(11): 3729-3739.
Wu, S.-N., E. C. So, Y.-K. Liao and Y.-M. Huang (2015). "Reversal by Ranolazine of DoxorubicinInduced Prolongation in the Inactivation of Late Sodium Current in Rat Dorsal Root Ganglion Neurons." Pain Medicine 16(5): 1032-1034.
Wu, S. N., B. S. Chen, T. I. Hsu, H. Peng, Y. H. Wu and Y. C. Lo (2009). "Analytical studies of rapidly inactivating and noninactivating sodium currents in differentiated NG108-15 neuronal cells." J Theor Biol 259(4): 828-836.
Wu, S. N., Y. C. Lo, A. Y. Shen and B. S. Chen (2011). "Contribution of non-inactivating Na+ current induced by oxidizing agents to the firing behavior of neuronal action potentials: experimental and theoretical studies from NG108-15 neuronal cells." Chin J Physiol 54(1): 19-29.
Wu, S. N., Y. H. Wu, B. S. Chen, Y. C. Lo and Y. C. Liu (2009). "Underlying mechanism of actions of tefluthrin, a pyrethroid insecticide, on voltage-gated ion currents and on action currents in pituitary tumor (GH3) cells and GnRH-secreting (GT1-7) neurons." Toxicology 258(1): 70-77.
Wu, S. N. and M. C. Yu (2023). "Inhibition of Voltage-Gated Na(+) Currents Exerted by KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea), an Inhibitor of Na(+)-Ca(2+) Exchanging Process." Int J Mol Sci 24(2).
Yamashita, J., M. Ogata, M. Takaoka and Y. Matsumura (2001). "KB-R7943, a selective Na+/Ca2+ exchange inhibitor, protects against ischemic acute renal failure in mice by inhibiting renal endothelin-1 overproduction." J Cardiovasc Pharmacol 37(3): 271-279.
Yan, Z., P. Chi, J. A. Bibb, T. A. Ryan and P. Greengard (2002). "Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons." J Physiol 540(Pt 3): 761-34770.
Zajączkowska, R., J. Mika, W. Leppert, M. Kocot-Kępska, M. Malec-Milewska and J. Wordliczek (2021). "Mirogabalin-A Novel Selective Ligand for the α2δ Calcium Channel Subunit." Pharmaceuticals (Basel) 14(2).