簡易檢索 / 詳目顯示

研究生: 謝智超
HSIEH, CHIH-CHAO
論文名稱: 以遺傳規劃法建立沿岸水體海洋水色反演模式
A Genetic Programming Based Approach to the Development of Coastal Water Ocean-Color Inversion Model
指導教授: 張智華
CHANG, CHIH-HUA
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 106
中文關鍵詞: 遙測遺傳規劃法海洋水色水色反算模式水質影像
外文關鍵詞: remote sensing, ocean color, ocean color inverse model, water quality imagery
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海洋與人們生活息息相關,人們從事的許多生產活動皆受此影響包括初級生產力、沿岸動力學、海洋碳循環、有害藻類、水產養殖漁業及娛樂業等等,傳統上大多以船出海採樣或設置浮標的方式來監測水質,但因人力及成本限制,所以無法得到全面性的水質資訊,使用水色衛星影像遙測大範圍水質成為近30年來取得海洋水質資訊的最重要工具。水色衛星監測水質的準確度與感測器特性與水體分類、大氣校正、水質參數、環境條件及使用的演算法有關,目前全世界正在使用或曾有文獻發表的演算法有超過100種以上。本研究以美國NASA之SeaWiFs衛星之生光資料庫SeaBASS (SeaWiFS Bio-optical Archive and Storage System) 之內容,包含1995年至2006年所調查之共804筆資料,每筆資料皆包含AOPs與IOPs,使用SeaWiFs衛星在遙測反射率Rrs波段412、443、490、510、555nm五個波段即AOPs所測得之數值為輸入參數(input),葉綠素濃度、浮游植物吸收係數aph443、無機性懸浮固體物及溶解有機物吸收係數adg443、CDOM吸收係數ag443作為IOPs當作輸出參數(output)套入遺傳規劃法中建立四項水質反算模式。
    本研究建立之模式在使用統計方法R2、RMSE、MSE及MAPE驗證後皆具有高準確度,並在相同條件下與現有NASA之三項模式分別在全部水體,Case-1及Case-2水體進行上述四項驗證方式之比較,經比較過後本研究建立之模式在R2、RMSE、MSE及MAPE均具有較佳之結果。
    最後將本研究建立之模式藉由實際衛星影像所匯出之資料選取相同之五個波段套用於本研究之模式,另外繪出衛星影像並與實際之衛星影像相比,在葉綠素濃度部分,台灣近岸周圍表現非常良好,與實際之衛星影像趨勢一致,但在遠洋部分與實際相比則略有高估之趨勢,整體而言在近岸與遠岸之趨勢皆為合理,並可以反映出實際衛星影像。由此便可知本研究建立之水體反算模式不僅在統計上對SeaBASS資料庫而言具有較高準確度之外,還能處理實際影像,可見遺傳規劃法應用於沿岸水體海洋水色反演模式具有代表性。
    本研究建立之模式並非以數學式呈現,而是以程式語言C#呈現,除了包含一般數學運算子外另包含程式指令,本文皆有將運算子試驗過程進行詳述,並會將建立之模式放置於網路平台上。

    People’s livelihoods are strongly dependent on coastal waters. Many people engage in production activities that involve plant and animal primary productivity and coastal dynamics. These activities include ocean carbon cycle, harmful algae, fisheries and aquaculture, and recreation activities. Because of this, monitoring water quality along coastal waters is a vital task to maintain primary productivity.
    Traditional method for monitoring water quality involves both boat sampling and use of a buoy. However, these traditional methods are often exhausting and laborious. Over the past thirty years satellites monitoring ocean color have been more and more frequently used to monitor larger areas. The accuracy of satellites monitoring ocean water quality is based on five categories: ocean type, water quality parameters, algorithms, environmental conditions, and atmospheric correction. This study will only focus on ocean type, water quality parameters, and algorithms.
    The objective of this study is to build an inverse model algorithm based on water quality parameters (i.e. optical properties) for case-1 and case-2 waters. The SeaBASS (SeaWiFs Bio-optical Archive and Storage System) database was used to get AOPs and IOPs dating only from 1995 to 2006. AOP data included five reflectance Rrs satellite telemetry SeaWiFs bands: 412, 443, 490, 510, 555 nm. Each band contained 804 data points. IOP data included 4 parameters: chlorophyll concentration; phytoplankton absorption coefficient (aph443); inorganic suspended solids and dissolved organic matter absorption coefficient (adg443); and CDOM absorption coefficient (ag443). These AOP and IOP data collected from SeaBASS were then input into the genetic programming method, which created an inverse model and simulated IOPs as output parameters.
    Results from this study showed three major findings. First, absorption coefficients for both aph443 and adg443 were more accurate and showed less error than compared to the model from NASA. Second, in comparison of simulated model IOP results, overall there is a consistent trend that is comparable and can sufficiently represent real satellite imagery. Chl along the Taiwan coast was better simulated with the inverse model than compared to far ocean. Third, the C#-based inverse model developed in this study is more accurate than mathematical-based models, likely because the software allows for program instructions within C#. The program instructions in the model, which have been tested and accounted, will be made publicly available via the internet. Therefore based on these three major findings, my study of model algorithms can help better account for water quality parameters, particularly in coastal waters.

    摘要 I Abstract III 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XVI 第1章 前言 1 1.1 研究動機 1 1.2 研究目的 3 1.2.1 建立沿岸水體水質遙測反算模式 3 1.3 論文架構 3 第2章 文獻回顧 6 2.1 衛星遙測用於海洋水色 6 2.2 光學水色基本要素 10 2.3 IOP對環境之應用與重要性 15 2.3.1 浮游植物及葉綠素 15 2.3.2 有色可溶解性有機物 18 2.4 海洋水體分類 20 2.5 現有演算法之介紹 22 第3章 研究材料與方法 32 3.1 各種海洋資料庫之資料內容及分布區域 32 3.1.1 模式建立選用資料及介紹 35 3.1.2 以遺傳規劃法建立海洋水色反算模式 39 3.1.3 遺傳規劃法軟體Discipulusru參數設定 47 3.2 評比指標 57 3.3 影像處理 60 第4章 結果與討論 61 4.1 遺傳規劃法建立之模式 61 4.1.1 參數之選定及設定條件 63 4.2 模式結果 63 4.2.1 遺傳規劃法建立之遙測葉綠素濃度水質反算模式 64 4.2.2 遺傳規劃法建立之CDOM吸收係數水質反算模式 66 4.2.3 遺傳規劃法建立之遙測CDOM結合NAP吸收系數反算水質模式 68 4.2.4 遺傳規劃法建立之浮游植物吸收系數反算水質模式 70 4.2.5 模式與其他現有模式之結果比較 74 4.2.6 近岸水體之比較 76 小結 82 第5章 遺傳規劃法建立之模式應用於水質影像 85 5.1 衛星影像應用於MODIS季變化 85 第6章 結論與建議 90 6.1 結論 90 6.2 建議 92 參考文獻 93 附錄一 Discipulu 操作流程 98 附錄二 Discipulus 參數設定說明 100 附錄三 本研究模式程式碼 103 附錄四 SeaDAS使用流程 106

    Asper, V. L., Deuser, W. G., Knauer, G. A., & Lohrenz, S. E. (1992). Rapid coupling of sinking particle fluxes between surface and deep ocean waters. Nature, 357(6380), 670-672.
    Aurin, D. A., & Dierssen, H. M. (2012). Advantages and limitations of ocean color remote sensing in CDOM-dominated, mineral-rich coastal and estuarine waters. Remote Sensing of Environment, 125(0), 181-197.
    Bouma, H. A., platt, T., Sathyendranath, S., Irwin, B. D., Wernand, M. R., & Kraay, G. W. (2000). Bio-optical properties of the subtropical North Atlantic. 11. Relevance to models of primary production. Marine ecology. Progress series, 200, 19-34.
    Briucaud, A., Morel, A., & Prieur, L. (1981). Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 26(1), 43-53.
    Bukata, R. P., Jerome, J. H., Kondratyev, K. Y., & Pozdnyakov, D. V. (1995). Optical Properties and Remote Sensing of Inland and Coastal Waters. CRC Press.
    Carder, K. L., Hawes, S. K., Baker, K. A., Smith, R. C., Steward, R. G., & Mitchell, B. G. (1991). Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products. Journal of Geophysical Research: Oceans, 96(C11), 20599-20611.
    Cipollini, P., Corsini, G., Diani, M., & Grasso, R. (2001). Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks. IEEE Transactions on Geoscience and Remote Sensing, 39(7), 1508-1524.
    CREC. (1984). Shore Protection Manual. Vols I and II. Coastal Engineering Research Center. U.S. Army Corps of Engineers, Washington, DC. U.S. Government Printing Office, Vicksburg.
    D'Alimonte., D., & Zibordi, G. (2003). Phytoplankton Determination in an Optically Complex Coastal Region Using a Multilayer Perceptron Neural Network. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 41(12), 2861-2868.
    Dekker, A. G., & Peters, S. W. M. (1993). The use of the Thematic Mapper for the analysis of eutrophic lakes: a case study in the Netherlands. International Journal of Remote Sensing, 14(5), 799-821.
    Dickey, T., Lewis, M., & Chang, G. (2006). Optical oceanography: Recent advances and future directions using global remote sensing and in situ observations. Reviews of Geophysics, 44(1), RG1001.
    Ewing, G. C. (1964). Oceanography from Space: Proceedings of Conference on the Feasibility of Conducting Oceanographic Explorations from Aircraft. Manned Orbital and Lunar Laboratories, 24-28.
    Frolov, S., Kudela, R. M., & Bellingham, J. G. (2013). Monitoring of harmful algal blooms in the era of diminishing resources: A case study of the U.S. West Coast. Harmful Algae, 21-22, 1-12.
    Goodwin, P., & Lawton, R. (1999). On the asymmetry of the symmetric MAPE. International Journal of Forecasting, 15(4), 405-408.
    Keiner, L. E., & Yan, X.-H. (1998). A Neural Network Model for Estimating Sea Surface Chlorophyll and Sediments from Thematic Mapper Imagery. Remote Sensing of Environment, 66(2), 153-165.
    Kirk, J. T. O. (2011). Light and Photosynthesis in Aquatic Ecosystems. New York: Cambridge University.
    Lee, Z., Carder, K. L., & Arnone, R. A. (2002). Deriving Inherent Optical Properties from Water Color: a Multiband Quasi-Analytical Algorithm for Optically Deep Waters. Applied Optics, 41(27), 5755-5772.
    Longhurst, A. (2006). Ecological Geography of the Sea. Academic Press.
    Martelli, E., & Amaldi, E. (2014). PGS-COM: A hybrid method for constrained non-smooth black-box optimization problems: Brief review, novel algorithm and comparative evaluation. Computers & Chemical Engineering, 63(0), 108-139.
    Matsushita, B., Yang, W., Chang, P., Yang, F., & Fukushima, T. (2012). A simple method for distinguishing global Case-1 and Case-2 waters using SeaWiFS measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 69(0), 74-87.
    Mobley, C. D. (1994). Light and Water: radiative transfer in natural waters. Academic Press, New York, 592.
    Morel, A. (1980). In-water and remote measurements of ocean color. Boundary-Layer Meteorology, 18(2), 177-201.
    Ni-Bin, C., & Vannah, B. (2013, 13-16 Oct. 2013). Comparative Data Fusion between Genetic Programing and Neural Network Models for Remote Sensing Images of Water Quality Monitoring. Paper presented at the Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on.
    Östlund, C., Flink, P., Strömbeck, N., Pierson, D., & Lindell, T. (2001). Mapping of the water quality of Lake Erken, Sweden, from Imaging Spectrometry and Landsat Thematic Mapper. Science of The Total Environment, 268(1–3), 139-154.
    Pernetta, J. C., & Milliman, J. D. (1995). Land-Ocean Interactions in the Coastal Zone : implementation plan. Stockholm : International Geosphere-Biosphere Programme: A Study of Global Change of the International Council of Scientific Unions (ICSU), 33, 204-210.
    Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied Optics, 36(33), 8710-8723.
    Rogers, H. (1987). Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge Massachusetts.
    Rundquist, D. C., Han, L., Schalles, J. F., & Peake, J. S. (1996). Remote measurement of algal chlorophyll in surface waters : The case for the first derivative of reflectance near 690nm. Photogrammetic Engineering & Remote Sensing, 62(2), 195-200.
    Sarmiento, J. L., Murnane, R., Quere, C. L., Keeling, R., & Williams, R. G. (1995). Air-Sea CO2 Transfer and the Carbon Budget of the North Atlantic [and Discussion]. Philosophical Transactions: Biological Sciences, 348(1324), 211-219.
    Sathyendranath, S. (2000). IOCCG Report Number 3. IOCCG.
    Secretariat, I. (1994). IGBP in Action:Work Plan 1994~1998. Stockholm : International Geosphere-Biosphere Programme: A Study of Global Change of the International Council of Scientific Unions (ICSU), 28, 151.
    Shanas, P. R., & Sanil Kumar, V. (2014). Coastal processes and longshore sediment transport along Kundapura coast, central west coast of India. Geomorphology, 214(0), 436-451.
    Shank, G. C., Zepp, R. G., Whitehead, R. F., & Moran, M. A. (2005). Variations in the spectral properties of freshwater and estuarine CDOM caused by partitioning onto river and estuarine sediments. Estuarine, Coastal and Shelf Science, 65(1–2), 289-301.
    Shanks, A. L., & Trent, J. D. (1980). Marine snow: sinking rates and potential role in vertical flux. Deep Sea Research Part A. Oceanographic Research Papers, 27(2), 137-143.
    Sharma, R., Singh, K., Singhal, D., & Ghosh, R. (2004). Neural network applications for detecting process faults in packed towers. Chemical Engineering and Processing: Process Intensification, 43(7), 841-847.
    Siegel, D. A., & Michaels, A. F. (1996). Quantification of non-algal light attenuation in the Sargasso Sea: Implications for biogeochemistry and remote sensing. Deep Sea Research Part II: Topical Studies in Oceanography, 43(2–3), 321-345.
    Sournia, A., Chrdtiennot-dinet, M. J., & Ricard, M. (1991). Marine phytoplankton: How many species in the world ocean? Journal of Plankton Research, 13(5), 1093-1099.
    Study, U. S. J. G. O. F. The biological pump.
    Tilstone, G. H., Lotliker, A. A., Miller, P. I., Ashraf, P. M., Kumar, T. S., Suresh, T., . . . Menon, H. B. (2013). Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea. Continental Shelf Research, 65(0), 14-26.
    Tzortziou, M., Herman, J. R., Gallegos, C. L., Neale, P. J., Subramaniam, A., Harding Jr, L. W., & Ahmad, Z. (2006). Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure. Estuarine, Coastal and Shelf Science, 68(1–2), 348-362.
    V.T.Larry, & Chris, M. (2004). Ag-Econ 302-Agricultural Economics II. College of Agricultural and Life Science,University of Idaho.
    Wang, Y., Zhang, D., Shen, Z., Chen, J., & Feng, C. (2014). Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary. Elsevier Ltd, 95, 353-362.
    YACOBI, Y. Z., ALBERTS, J. J., TAKÁCS, M., & McELVAINE, M. (2003). Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA) rivers: the impact of molecular size distribution. Journal of Limnology, 62(1). doi: 10.4081/jlimnol.2003.41
    41-46
    Zepp, R. G., Callaghan, T. V., & Erickson, D. J. (1995). Effects of increased solar ultraviolet radiation on biogeochemical cycles. Ambio, 24(3), 181-187.
    Zhang, Y., & Bhattacharyya, S. (2004). Genetic programming in classifying large-scale data: an ensemble method. Information Sciences, 163(1–3), 85-101.
    Zibordi, G., Strömbeck, N., Mélin, F., & Berthon, J. F. (2006). Tower-based radiometric observations at a coastal site in the Baltic Proper. Estuarine, Coastal and Shelf Science, 69(3–4), 649-654.
    行政院環保署. 地球難以承受之熱-全球溫暖化. (1999). http://edresource.nmns.edu.tw/ShowObject.aspx?id=0b81aa7caa0b81d9f9f80b81aa8ced0b81a2df75.
    張智華. (2008). 非點源污染負荷模式及水質生光模式之結合與應用. 國立成功大學環境工程研究所.
    黃世任. (2002). 中華衛星一號海洋水色照相儀資料之大氣校正及其應用. 國立中央大學太空科學研究所.
    楊道昌. (2002). 區域連續型降雨-逕流模式視窗化軟體之發展與應用. 土木水利, 28(4), 106-117.
    蕭伊君. (2007). 應用物質流布分析事業廢棄物產出因子與其在查核管制之研究. 國立台北科技大學-環境規劃管理研究所.

    下載圖示 校內:2019-08-07公開
    校外:2019-08-07公開
    QR CODE