簡易檢索 / 詳目顯示

研究生: 查名鴻
Cha, Ming-Hong
論文名稱: 以耦合串接方式製作分波多工器之研究分析
Wavelength Division Multiplexer of Four Channels Using Cascaded Directional Couplers
指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 68
中文關鍵詞: 有限差分時域法指向耦合器分波多工器
外文關鍵詞: directional coupler, finite-difference time-domain, wavelength division multiplexer
相關次數: 點閱:217下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,主要是利用串接不同耦合區長度的對稱型指向耦合器來達到分波多工器的功能。元件使用二維的有限差分時域法來進行模擬、分析。以一極短脈衝波為輸入光源,並利用傅立葉轉換,可以輕易的得到此結構的全頻譜響應。我們可藉由頻譜分析來設計此分波多工器元件。這篇論文證實了此分波多工器可以將1.5μm-1.6μm的波長範圍內分出四個輸出通道。並且文中也會探討如何增進此元件能量強度對比的方法。

    A wavelength division multiplexer (WDM) formed by cascaded symmetric directional couplers was studied in this thesis. The device was simulated and analyzed using 2D finite-difference time-domain method. A full-frequency spectrum of the device was easily obtained using an ultra-short optical pulse input followed by fast Fourier transform on the time variation of EM wave. Based on the spectrum analysis, a WDM performance of four channels in the wavelength range from 1.5μm to 1.6μm was simulated and verified. Furthermore, it was demonstrated that channel contrasts was improved by adding more identical couplers at the same cascaded order.

    摘要...........................................i Abstract.......................................ii 誌謝...........................................iii 目錄...........................................iv 第一章.........................................1 1-1 研究動機...................................1 1-2 研究方法...................................4 1-3 論文架構...................................5 第二章.........................................6 2-1 簡介.......................................6 2-2 耦合光波導.................................8 2-2.1 耦合模態方程式的特徵解..................10 2-2.2 耦合波導管的一般解......................12 2-3 有限差分時域法 (finite-difference time-domain Methode)...16 第三章........................................20 3-1 串接式指向耦合分波多工器之設計............20 3-1.1 指向耦合器的串接效果....................24 3-1.2 耦合波導管的重要參數....................26 3-1.3 接上單模S-Bend的輸出波導管..............30 3-2 串接式指向耦合器的模擬結果................34 第四章........................................38 第五章........................................44 5-1 討論.....................................44 5-2 結論 .....................................45 5-3 未來展望.................................45 參考文獻......................................48 Appendix A....................................52 Appendix B....................................56 Appendix C....................................64

    [1] H. C. Cheng and R. V. Ramaswamy, “Symmetrical directional coupler as a
    wavelength multiplexer-demultiplexer: theory and experiment,” IEEE J.
    Quantum Electron., vol. 27, no. 3, pp. 567-574, 1991.
    [2] D. Marcuse, “Bandwidth of forward and backward coupling directional
    coupler,” J. Lightwave Technol., vol. 5, no. 12, pp. 1773-1777, 1987.
    [3] M. Digonnet and H. J. Shaw, “Wavelength multiplexing in single-mode fiber
    couplers,” Appl. Opt., vol. 22, no. 3, pp. 484-491, 1983.
    [4] R. J. Orazi, et al, “Cascaded narrow channel fused fiber wavelength
    division multiplexers,” Electron. Lett., vol. 32, no. 4, pp. 368-370,
    1996.
    [5] T. T. Vu, et al, “Four channel fused fiber mux/demux couplers and
    add/drop filters in the 1300 and 1550nm regions,” Electron. Lett., vol.
    34, no. 6, pp. 583-585, 1998.
    [6] W. Shin and K. Oh, “Novel micro-optical waveguide on micro- actuating
    platform for re-configurable wavelength selective optical switch,” Optics
    Express, vol. 12, no. 19, pp. 4378-4389, 2004.
    [7] K. Imoto, H. Sano, and M. Miyazaki, “Guided-wave multi/ demultiplexers
    with high stopband rejection,” Appl. Opt., vol. 26, no. 19, pp. 4214-
    4219, 1987.
    [8] H. C. Cheng and R. V. Ramaswamy, “A dual wavelength (1.32-1.56 μm)
    directional coupler demultiplexer by ion exchange in glass,” IEEE Photon.
    Technol. Lett., vol. 2, no. 9, pp. 637-639, 1990.
    [9] S. Shaari, K. S. Leong and O. C. Siah, “Design and characteristics of
    four-channel 1200GHz spacing 1550nm WDM device using cascaded directional
    couplers,” ISCE2000 Proceedings, Nov., pp. 249-254, 2000.
    [10] B. Liu, et al, “A wavelength multiplexer using cascaded three-
    dimensional vertical couplers,” Appl. Phys. Lett., vol. 76, no. 3, pp.
    282-284, 2000.
    [11] M. Koshiba, “Wavelength division multiplexing and demultiplexing with
    photonic crystal waveguide couplers,” J. Lightwave Technol., vol. 19,
    no. 12, pp. 1970-1975, 2001.
    [12] S. Boscolo, et al, “Coupling and decoupling of electromagnetic waves in
    parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron.,
    vol. 38, no. 1, pp. 47-53, 2002.
    [13] Y. Chen and W. T. Joines, “Enhanced WDM performance using curved
    waveguide couplers,” Opt. Commun., vol. 228, pp. 319-330, 2003.
    [14] H. S. Bae, et al, “A triplexer optical transceiver module using cascaded
    directional couplers,” Proc. of SPIE, vol. 6124, 61241L, 2006.
    [15] D. Marcuse, “Dielectric multilayer thin-film filter for WDM transmission
    systems,” J. Lightwave Technol., vol. 1, no. 1, pp. 116-121, 1983.
    [16] H. Takahashi, et al, “Transmission characteristics of arrayed waveguide
    N×N wavelength multiplexer,” J. Lightwave Technol., vol. 13, no. 3,
    pp.447-455, 1995.
    [17] K. O. Hill, et al, “Photosensitivity in optical fiber waveguides:
    application to reflection filter fabrication,” Appl. Phys. Lett., vol.
    32, no. 10, pp. 647-649, 1978.
    [18] Y. Hibino, et al, “Wavelength division multiplexer with photoinduced
    Bragg gratings fabricated in a planar-lightwave-circuit type asymmetric
    Mach-Zehnder interferometer on Si,” IEEE Photon. Technol. Lett., vol. 8,
    no. 1, pp. 84-86, 1996.
    [19] T. Negami, et al, “Guided-wave optical wave length demultiplexer using
    and asymmetric Y junction,” Appl. Phys. Lett., vol. 54, no. 12, pp. 1080-
    1082, 1989.
    [20] K. Suzuki, et al, “WDM tuneable dispersion compensator with PLC ring
    resonators,” Opt. Fiber Commun. conference, vol. 1, pp. 23-27, 2004.
    [21] K. Kawano and T. Kitoh, Introduction to optical waveguide analysis:
    solving Maxwell’s equation and the Schrdinger equation, Wiley-
    Interscience, New York, 2001.
    [22] Y. Chung, et al, “Analysis of a tunable multichannel two mode
    interference wavelength division multiplexer/demultiplexer,” J.
    Lightwave Technol., vol. 7, no. 5, pp. 766-777, 1989.
    [23] K. S. Yee, “Numerical solution of initial boundary value problems
    involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas
    Propagat., vol. AP-14, no. 3, pp. 302-307,1966.
    [24] T. Tamir, Guided-wave optoelectronics, Springer-Verlag, New York, 1990.
    [25] S. L. Chuang, “A coupled-mode formulation by reciprocity and a
    variational principle,” J. Lightwave Technol., vol. LT-5, no. 1, pp. 5-
    5, 1987.
    [26] S. L. Chuang, “A coupled-mode theory for multiwaveguide systems
    satisfying the reciprocity theorem and power conservation,” J. Lightwave
    Technol., vol. LT-5, no. 1, pp. 174-183, 1987.
    [27] S. L. Chuang, Physics of optoelectronic devices, Wiley-interscience, New
    York, 1995.
    [28] W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,”
    J. Opt. Soc. Am. A, vol. 11, no. 3, pp. 963-983, 1994.
    [29] L. B. Soldano and E. C.M. Pennings, “Optical multi-mode interference
    devices based on self-imaging: Principles and applications,” J.
    Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995.
    [30] C. C. Chen, “Wavelength division multiplexer of high energy intensity
    contrast based on triple-mode interference,” M.D. Thesis, Institute of
    Microelectronics, National Cheng Kung University, Tainan, 2005.

    下載圖示 校內:2007-08-09公開
    校外:2007-08-09公開
    QR CODE