| 研究生: |
查名鴻 Cha, Ming-Hong |
|---|---|
| 論文名稱: |
以耦合串接方式製作分波多工器之研究分析 Wavelength Division Multiplexer of Four Channels Using Cascaded Directional Couplers |
| 指導教授: |
蔡宗祐
Tsai, Tzong-Yow |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 有限差分時域法 、指向耦合器 、分波多工器 |
| 外文關鍵詞: | directional coupler, finite-difference time-domain, wavelength division multiplexer |
| 相關次數: | 點閱:217 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,主要是利用串接不同耦合區長度的對稱型指向耦合器來達到分波多工器的功能。元件使用二維的有限差分時域法來進行模擬、分析。以一極短脈衝波為輸入光源,並利用傅立葉轉換,可以輕易的得到此結構的全頻譜響應。我們可藉由頻譜分析來設計此分波多工器元件。這篇論文證實了此分波多工器可以將1.5μm-1.6μm的波長範圍內分出四個輸出通道。並且文中也會探討如何增進此元件能量強度對比的方法。
A wavelength division multiplexer (WDM) formed by cascaded symmetric directional couplers was studied in this thesis. The device was simulated and analyzed using 2D finite-difference time-domain method. A full-frequency spectrum of the device was easily obtained using an ultra-short optical pulse input followed by fast Fourier transform on the time variation of EM wave. Based on the spectrum analysis, a WDM performance of four channels in the wavelength range from 1.5μm to 1.6μm was simulated and verified. Furthermore, it was demonstrated that channel contrasts was improved by adding more identical couplers at the same cascaded order.
[1] H. C. Cheng and R. V. Ramaswamy, “Symmetrical directional coupler as a
wavelength multiplexer-demultiplexer: theory and experiment,” IEEE J.
Quantum Electron., vol. 27, no. 3, pp. 567-574, 1991.
[2] D. Marcuse, “Bandwidth of forward and backward coupling directional
coupler,” J. Lightwave Technol., vol. 5, no. 12, pp. 1773-1777, 1987.
[3] M. Digonnet and H. J. Shaw, “Wavelength multiplexing in single-mode fiber
couplers,” Appl. Opt., vol. 22, no. 3, pp. 484-491, 1983.
[4] R. J. Orazi, et al, “Cascaded narrow channel fused fiber wavelength
division multiplexers,” Electron. Lett., vol. 32, no. 4, pp. 368-370,
1996.
[5] T. T. Vu, et al, “Four channel fused fiber mux/demux couplers and
add/drop filters in the 1300 and 1550nm regions,” Electron. Lett., vol.
34, no. 6, pp. 583-585, 1998.
[6] W. Shin and K. Oh, “Novel micro-optical waveguide on micro- actuating
platform for re-configurable wavelength selective optical switch,” Optics
Express, vol. 12, no. 19, pp. 4378-4389, 2004.
[7] K. Imoto, H. Sano, and M. Miyazaki, “Guided-wave multi/ demultiplexers
with high stopband rejection,” Appl. Opt., vol. 26, no. 19, pp. 4214-
4219, 1987.
[8] H. C. Cheng and R. V. Ramaswamy, “A dual wavelength (1.32-1.56 μm)
directional coupler demultiplexer by ion exchange in glass,” IEEE Photon.
Technol. Lett., vol. 2, no. 9, pp. 637-639, 1990.
[9] S. Shaari, K. S. Leong and O. C. Siah, “Design and characteristics of
four-channel 1200GHz spacing 1550nm WDM device using cascaded directional
couplers,” ISCE2000 Proceedings, Nov., pp. 249-254, 2000.
[10] B. Liu, et al, “A wavelength multiplexer using cascaded three-
dimensional vertical couplers,” Appl. Phys. Lett., vol. 76, no. 3, pp.
282-284, 2000.
[11] M. Koshiba, “Wavelength division multiplexing and demultiplexing with
photonic crystal waveguide couplers,” J. Lightwave Technol., vol. 19,
no. 12, pp. 1970-1975, 2001.
[12] S. Boscolo, et al, “Coupling and decoupling of electromagnetic waves in
parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron.,
vol. 38, no. 1, pp. 47-53, 2002.
[13] Y. Chen and W. T. Joines, “Enhanced WDM performance using curved
waveguide couplers,” Opt. Commun., vol. 228, pp. 319-330, 2003.
[14] H. S. Bae, et al, “A triplexer optical transceiver module using cascaded
directional couplers,” Proc. of SPIE, vol. 6124, 61241L, 2006.
[15] D. Marcuse, “Dielectric multilayer thin-film filter for WDM transmission
systems,” J. Lightwave Technol., vol. 1, no. 1, pp. 116-121, 1983.
[16] H. Takahashi, et al, “Transmission characteristics of arrayed waveguide
N×N wavelength multiplexer,” J. Lightwave Technol., vol. 13, no. 3,
pp.447-455, 1995.
[17] K. O. Hill, et al, “Photosensitivity in optical fiber waveguides:
application to reflection filter fabrication,” Appl. Phys. Lett., vol.
32, no. 10, pp. 647-649, 1978.
[18] Y. Hibino, et al, “Wavelength division multiplexer with photoinduced
Bragg gratings fabricated in a planar-lightwave-circuit type asymmetric
Mach-Zehnder interferometer on Si,” IEEE Photon. Technol. Lett., vol. 8,
no. 1, pp. 84-86, 1996.
[19] T. Negami, et al, “Guided-wave optical wave length demultiplexer using
and asymmetric Y junction,” Appl. Phys. Lett., vol. 54, no. 12, pp. 1080-
1082, 1989.
[20] K. Suzuki, et al, “WDM tuneable dispersion compensator with PLC ring
resonators,” Opt. Fiber Commun. conference, vol. 1, pp. 23-27, 2004.
[21] K. Kawano and T. Kitoh, Introduction to optical waveguide analysis:
solving Maxwell’s equation and the Schrdinger equation, Wiley-
Interscience, New York, 2001.
[22] Y. Chung, et al, “Analysis of a tunable multichannel two mode
interference wavelength division multiplexer/demultiplexer,” J.
Lightwave Technol., vol. 7, no. 5, pp. 766-777, 1989.
[23] K. S. Yee, “Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas
Propagat., vol. AP-14, no. 3, pp. 302-307,1966.
[24] T. Tamir, Guided-wave optoelectronics, Springer-Verlag, New York, 1990.
[25] S. L. Chuang, “A coupled-mode formulation by reciprocity and a
variational principle,” J. Lightwave Technol., vol. LT-5, no. 1, pp. 5-
5, 1987.
[26] S. L. Chuang, “A coupled-mode theory for multiwaveguide systems
satisfying the reciprocity theorem and power conservation,” J. Lightwave
Technol., vol. LT-5, no. 1, pp. 174-183, 1987.
[27] S. L. Chuang, Physics of optoelectronic devices, Wiley-interscience, New
York, 1995.
[28] W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,”
J. Opt. Soc. Am. A, vol. 11, no. 3, pp. 963-983, 1994.
[29] L. B. Soldano and E. C.M. Pennings, “Optical multi-mode interference
devices based on self-imaging: Principles and applications,” J.
Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995.
[30] C. C. Chen, “Wavelength division multiplexer of high energy intensity
contrast based on triple-mode interference,” M.D. Thesis, Institute of
Microelectronics, National Cheng Kung University, Tainan, 2005.