| 研究生: |
楊嘉芬 Yang, Chia-fen |
|---|---|
| 論文名稱: |
探討微米尺度之鍍金粒幾丁聚醣膜表面對3T3纖維母細胞的貼附與生長的反應 Study of the micro-scale Au deposited chitosan film surface responding to the attachment and proliferation of 3T3 fibroblast cells |
| 指導教授: |
廖峻德
Liao, Jiunn-der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 奈米尺度機械性質 、纖維母細胞 、蒸鍍上金群 、幾丁聚醣 |
| 外文關鍵詞: | Chitosan film, nano-mechanical, fibroblast cell, evaporated Au cluster |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
幾丁聚醣由於具有無毒性、生物可降解性、生物相容性和價格便宜等優點,被視為優越的可運用於組織工程的生醫材料。雖然幾丁聚醣是一合適的支架材料,但對纖維母細胞幾乎沒有促進生長的效果。此外,由於細胞形貌與細胞和表面的作用息息相關,培養纖維母細胞在幾丁聚醣上,細胞型態多呈球狀。而細胞受生物基材表面的物理化學訊號影響,主要可分為三類:化學、形貌和機械性質,本研究以修飾特別製備的幾丁聚醣膜表面性質來改善細胞親和性。以電子束蒸鍍技術搭配蒸鍍罩,於幾丁聚醣膜表面蒸鍍上有圖案狀的微尺度金群。蒸鍍上的金群直徑約150 μm,厚度約20 nm。在幾丁聚醣膜上金群彼此間距1000 μm。以掃描式電子顯微鏡和共軛焦 3D 光學表面形貌量測儀來分析表面形貌。能量散佈光譜儀、光電子化學光譜儀和接觸角量測儀來分析化學性質。以薄膜壓痕試驗機的動態接觸模組作金群和幾丁聚醣基材的奈米尺度機械性質分析。實驗結果證明相較於幾丁聚醣基材,蒸鍍上的金群和金群附近的區域,具有較合適的聯合性質,去促進纖維母細胞的貼附性、攤開和生長狀況。且可觀察到細胞多聚集在此金群和金群附近的區域上。特別的是奈米尺度的表面機械性質在這些區域都有增進的效果。由金群造成的結合適當的化學及機械性質,在幾丁聚醣膜上創造一適宜纖維母細胞選擇性生長的表面,期望在組織工程的應用上可在引導細胞生長的影響多提供一種可能的方法。
Chitosan is classified as an excellent biomaterial owing to the advantages of non-toxicity, biodegradation, biocompatibility, and low cost. Though chitosan is regarded as a suitable scaffold material, it shows almost no promotion effect on the growth of cultured fibroblast cells. Besides, cell shapes induced by cell–surface interactions tend to become round. Cells on a biomaterial surface usually respond to three main categories of physicochemical cues: chemically, topographically, and mechanically. In this study, mechanical property of a particularly-prepared chitosan film was modified to improve its cell affinity. Micro-scale Au clusters were patterned and seeded on the chitosan film using a shadow mask and electron beam evaporator. The dimension of the evaporated Au cluster was 150 μm in diameter and 20 nm in thickness. They were separated at a distance of 1000 μm on the chitosan film. Scanning Electron Microscope and 3D Confocal Microscope were used to characterize their surface morphologies. X-ray Photoelectron Spectroscopy, Energy Dispersive Spectrometer, and water contact angles were employed to examine their chemical structures. Nano-indenter with dynamic contact module was applied to measure their nano-mechanical properties surrounding Au cluster and the chitosan matrix. Experimental results demonstrated that as compared with the chitosan matrix, the patterned Au clusters and their neighboring area exhibited a suitable and combined property to promote cell adhesion, spreading, and growth. Fibroblast cells were found accumulated surrounding Au clusters and their neighboring area. In particular, nano-mechanical properties in this domain significantly enhanced. In combination with the possible chemical and mechanical changes caused by Au cluster, a selectively-enhanced chitosan surface for fibroblast cells was created, which is promising for enabling a cells-guidable effect in tissue engineering.
[1] J.R. Jones, O. Tsigkou, E.E Coates, M.M Stevens, J.M. Polak and L.L Hench, “Extracellular matrix formation and mineralizationon a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells”, Biomaterials, Vol.28, 1653-1663, 2007.
[2] Q. Lu, K. Ganesan, D. T. Simionescu and N.R. Vyavahare, “Novel porous aortic elastin and collagen scaffolds for tissue engineering”, Biomaterials, Vol. 25, 5227-5237, 2004.
[3] F.J. O’Brien, B.A. Harley, I.V. Yannas and L.J. Gibson, “ The effect of pore size on cell adhesion in collagen-GAG scaffolds”, Biomaterials, Vol. 26, 433-441, 2005.
[4] J. C. Dubois, C. Souchier, M. L. Couble, P. Exbrayat and M. Lissac, “An image analysis method for the study of cell adhesion to biomaterials”, Biomaterials, Vol. 20, 1841-1849, 1999.
[5] C.S. Chen, J.T. Alonso, E. Ostuni, G.M. Whitesides and D.E. Ingber, “Cell shape provides global control of focal adhesion assembly”, Biochemical and Biophysical Research Communications, Vol. 307, 355–361, 2003.
[6] Y. Arima and H. Iwata, “Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers”, Biomaterials, Vol. 28, 3074-3082, 2007.
[7] S. Z. Jokhadar, T. Znidarcic, S. Svetina, U. Batista, “The effect of substrate and adsorbed proteins on adhesion, growth and shape of CaCo-2 cells”, Cell Biology International, Vol. 31, 1097-1108, 2007.
[8] 再生醫學科技教學研究群,「再生醫學科技」,國立成功大學,2006。
[9] M.G. Peter , “Application and environmental aspects of chitin and chitosan”, Journal of Macromolecular Science: Pure & Applied Chemistry, Vol. A32 , 629-640,1995.
[10] Y.L. Cui, A.D. Qi, W.G. Liu, X.H. Wang, H. Wang, D.M. Ma and K.D. Yao, “Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro”, Biomaterials, Vol. 24, 3859-3868, 2003.
[11] I.K. Park, J. Yang, H.J. Jeong, H.S. Bom , I. Harada, T. Akaike , S.I. Kim and C.S. Cho, “Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment”, Biomaterials, Vol. 24, 2331-2337, 2003.
[12] B.A. Zielinski, P. Aebischer, “Chitosan as a matrix for mammalian cell encapsulation”, Biomaterials, Vol. 15, 1049-1056, 1994.
[13] T. Mori, M. Okumura, M. Matsuura, K. Ueno, S. Tokura, Y. Okamoto, S. Minami and T. Fujinaga, “Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro”, Biomaterials, Vol. 18, 947-951, 1997.
[14] J. S. Mao, Y. L. Cui, X. H. Wang, Y. Sun, Y. J. Yin, H. M. Zhao and K. D. Yao, “A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis”, Biomaterials, Vol. 25, 3973-3981, 2004.
[15] J.Y. Wong, J.B. Leach and X.Q. Brown, “Balance of chemistry, topography, and mechanics at the cell-biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response”, Surface Science, Vol. 570, 119-133, 2004.
[16] R.J. Pelham and Y.L. Wang, “Cell locomotion and focal adhesions are regulated by substrate flexibility ”, Proceedings of the National Academy of Sciences of the United states of America , Vol. 94, 13661-13665, 1997.
[17] H.B. Wang, M. Dembo and Y.L. Wang, “Substrate flexibility regulates growth and apoptosis of normal but not transformed cells”, American Journal of Physiology - Cell Physiology, Vol. 279, C1345-C1350, 2000.
[18] C.M. Lo, H.B. Wang, M. Dembo and Y.L. Wang, “Cell movement is guided by the rigidity of the substrate”, Biophysical Journal, Vol. 79, 144-152, 2000.
[19] D.S. Gray, J. Tien and C.S. Chen, “Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus”, Journal of Biomedical Materials Research - Part A, Vol.66, 605-614, 2003.
[20] J.A. Rowley and D.J. Mooney, “Alginate type and RGD density control myoblast phenotype”, Journal of Biomedical Materials Research, Vol. 60, 217-223, 2002.
[21] A. Engler, L. Richert, J. Wong, C. Picart, D. Discher, “Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: Correlations between substrate stiffness and cell adhesion “, Surface Science, Vol. 570, 142-154, 2004.
[22] K.I. Draget, G. Skjak-Braek and O. Smidsrod, “Alginate based new materials”, International Journal of Biological Macromolecule, Vol. 21, 47-55, 1997.
[23] W.S. Ramsey, W. Hertel, E.D. Nowlan and N.J. Binkowski, “Surface treatment and cell attachment”, In Vitro, Vol. 20, 802-808, 1984.
[24] G. Khang, J.H. Jeon, J.W. Lee and H.B. Lee, “Platelet and cell interactions on gold sputter-deposited polymeric surfaces”, Bio-Medical Materials & Engineering, Vol. 8, 299-309, 1998.
[25] N. Faucheux, R. Schweiss, K. Lutzow, C. Werner and T. Groth, “Self- assembled monolayers with different terminating groups as model substrates for cell adhesion studies” Biomaterials, Vol. 25, 2721-2730, 2004.
[26] C.Y. Hsieh, S.P. Tsai, D.M. Wang, Y.N. Chang, H.J. Hsieh, “Preparation of γ-PGA/chitosan composite tissue engineering matrices,” Biomaterials,
Vol. 26, 5617-5623, 2005
[27] R.A.A. Muzzarelli, “Chitin (1st ed)”, Pergamon Press, Oxford, New York, 1977.
[28] C. Chatelet, O. Damour and A. Domard, “Influence of the degree of acetylation on some biological properties of chitosan films”, Biomaterials, Vol. 22, 261-268, 2001.
[29] 陳信宏,「利用氣態丙烯酸為中間劑以固定幾丁聚醣於電漿活化之L型聚乳酸薄膜表面」,國立成功大學材料科學及工程學系,2005。
[30] M.N.V.R. Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa and A.J. Domb, “Chitosan chemistry and pharmaceutical perspective”, Chemical. Reviews, Vol. 104, 6017-6084, 2004
[31] E. Khor and L.Y. Lim, “Implantable applications of chitin and chitosan”,Biomaterials, Vol. 24 , p. 2339-2349, 2003.
[32] M. Bodnar, J.F. Hartmann and J. Borbely, “Preparation and characterization of chitosan-based nanoparticles”,
Biomacromolecules,Vol. 6, 2521-2527, 2005.
[33] B. Krajewska, “Application of chitin- and chitosan-based materials for enzyme immobilizations: a review”, Enzyme and Microbial
Technology,Vol. 35, 126-139, 2004.
[34] S.C. Madihally and H. Mattew, “Porous chitosan scaffolds for tissueengineering”, Biomaterials, Vol. 20, 1133-1142, 1999.
[35] J.K.F. Suh and H.W.T. Matthew, “Application of chitosan-based polysaccharides biomaterials in cartilage tissue engineering: a review”, Biomaterials, Vol. 21, 2589-2598, 2000.
[36] W. Tachaboonyakiat, T. Derizawa and M. Akashi, “Inorganic–organic polymer hybrid scaffold for tissue engineering. II. Partial enzymatic degradation of hydroxyapatite-chitosan hybrid”, Journal of Biomaterials Science, Polymer Edition, Vol. 13, p. 1021-1032, 2002.
[37] F. Zhao, Y. Yin, W.W. Lu, J.C. Leong, W. Zhang, J. Zhang, M. Zhang and K. Yao, “Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffold”, Biomaterials, Vol. 23, 3227-3234, 2002.
[38] I. Yamaguchi, K. Tokuchi, H. Fukuzaki, Y. Koyama, K. Takakuda, H. Monma and J. Tanaka, “Preparation and microstructure analysis of chitosan/ hydroxyapatite nanocomposites”, Journal of Biomedical Materials Research , Vol. 55, p. 20-27, 2001.
[39] F. Chen, Z.C. Wang and C.J. Lin, “Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials”, Materials Letters, Vol. 57, 858-861, 2002.
[40] Z. Li, L. Yubao, Y. Aiping, P. Xuelin, W. Xuejiang and Z. Xiang, “Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials”, Journal of Materials Science: Materials in Medicine, Vol. 16, 213-219, 2005.
[41] S. Ito, I. Yamaguchi, M. Suzuki, S. Ichinose, K. Takakuda, H. Kobayaschi, K. Shinomiya and J. Tanaka, “Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo”, Brain Research, Vol. 993, 111-123, 2003.
[42] Y.M. Lee, Y.J. Park, S.J. Lee, Y. Ku, S.B. Han, P.R. Klokkevold, S.M. Choi and C.P. Chung, “Tissue engineered bone formation using chitosan/tricalcium phosphate sponges”, Journal of Periodontology, Vol. 71, 410-417, 2000.
[43] J.D. Baumgardner, R. Wiser, P.D. Gerard, P. Bergin, B. Chestnutt, M. Marini, V. Ramsey, S.H. Elder and J.A. Gilbert, “Chitosan: potential use as a bioactive coating for orthopedic and craniofacial/dental implants”, Journal of Biomaterials Science, Polymer Edition , Vol. 14, p. 423-438, 2003.
[44] H.J.M. Song, R.P. Nacamuli, T.D. Fang and M.T. Longaker, “The bone regenerative effect of chitosan microsphere encapsulated growth hormone, chitosan microsphere on consolidation in mandibular distraction osteogenesis of a dog model”, Journal of Craniofaial Surgery, Vol.15,312-313, 2004.
[45] W. Paul and C.P. Sharma, “Chitosan and alginate wound dressings: a short review”, Trends Biomater Artif Organs, Vol. 18 , 18-23, 2004.
[46] M.M. Beppu and C.C. Santana, “Influence of calcification solution on in vitro chitosan mineralization”, Material Research, Vol. 5, 47-50, 2002.
[47] M.M. Beppu and C.C. Santana, “PAA influence on chitosan membrane calcification”, Materials Science and Engineering C, Vol. 23, 651-658,
2003.
[48] S.V. Madihally, H.W.T. Matthew, “Porous chitosan scaffolds for tissue engineering”, Biomaterials, Vol. 20, 1133-1142, 1999.
[49] K. Akari, H, Tamagaki, T. Kumakiri, K. Tsuji, E. S. Koh and C.N. Tai, “Reduction in macroparticles during the deposition of tin films prepared by arc ion plating”, 43/44, 312-323, 1990.
[50] N. Laegreid and G. K. Wehner, “Sputtering Yields of Metals for Ar+ and Ne+ Ions with Energies from 50 to 600 eV”, Journal of Applied Physics, Vol.32, 365- ,1961.
[51] 羅光耀,「薄膜光學: 2. 金屬薄膜之製作」,國立嘉義大學應用物理學系光電暨固態電子研究所,2006。
[52] 林育全、黃富駿、陳信宏、張文耀、蘇中源,「CO2 雷射雕刻機」,國科會南區微系統微研究中心,2004。
[53] 鄧吉雄,「Electron Beam Evaporation 1」,國科會南區微系統微研究
中心,2003。
[54] 陳彥志,「氧化鎵奈米線及氧化銦顆粒成長及分析」,成功大學材料科
學及工程學系所,2004。
[55] 張家維、吳奕德、林育芸,「MTS-Nano-indentor-XP」,國科會南區
成功大學 微奈米中心,2005。
[56] W.C. Oliver and G.M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, Journal of Material Research, Vol.7, 1564-1583, 1992.
[57] W.C. Oliver and G.M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology”, Journal of Material Research, Vol. 19, 3-20, 2004.
[58] 汪建民主編,「材料分析」,中國材料科學學會,1998。
[59] C. Zhang, Y. Cheng, G. Qu, X. Wu, Y. Ding, Z. Cheng, L. Yu and Q. Ping, “ Preparation and characterization of galactosylated chitosan coated BSA microspheres containing 5-fluorouracil”, Carbohydrate Polymers, Vol. 72, , 390-397, 2008.
[60] Y.L. Cui, A.D. Qi, W.G. Liu, X.H. Wang, H. Wang, D.M. Ma and K.D. Yao, “Biomimetic surface modification of poly( -lactic acid) with chitosan and its effects on articular chondrocytes in vitro ”, Biomaterials, Vol. 24, 3859-3868, 2003.
[61] G. Beamson and D. Briggs, “High Resolution XPS of Organic Polymers the Scienta ESCA300 Database”, John Wiley & Sons, 1992.
[62] 張志仲,「可降解及多孔性之適強度幾丁聚醣薄膜膠體對銅離子吸附的研究」,國立成功大學材料科學及工程學系,2007。
[63] 翁志強,「自由基為主順流式微波電漿處理自組裝單分子層反應機制的研究」,國立成功大學材料科學及工程學系,2008。
[64] 陳宣毅,「細胞爬行的物理學」,物理雙月刊第二十九卷,1029-1033,2007。