簡易檢索 / 詳目顯示

研究生: 王士銘
Wang, Shih-Ming
論文名稱: 奈米球鏡微影術之研究與應用
Development and Applications of Nanospherical-Lens Lithography
指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 103
中文關鍵詞: 奈米球
外文關鍵詞: dissertation
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,對於奈米球文影術發展出兩種奈米製作的方法。首先,利用氧電漿處理來輔助傳統的奈米球微影術。“電漿輔助奈米球微影術”利用氧電漿縮小PS奈米球的尺寸,球與球之間露出基板的面積會更大。利用此種改良過的奈米球模板當作遮罩,可以制作出三角形陣列並且可以精確地控制其尺寸與間距。目前所製作出的三角形陣列尖端距離最小大約在28奈米,可以視作為蝴蝶結式奈米天線,對於兩三角形之間電漿耦合的效應我們在穿透率光譜上證實它的存在性。
    在本研究討論的第二種方法我們稱它作“奈米球鏡微影術”。在光阻上面排列單層六方最密堆積的奈米球層,奈米球當作是一種奈米尺度的球透鏡對紫外光會有聚焦的功用,在光阻顯影後製作出圓跟橢圓的圖案。此種新穎的方式可以製作出大面積的奈米圓盤,圓盤最小約在230奈米。當使用紫外線燈為光源,可製作出奈米橢圓,長軸大約在650奈米而短軸約在280奈米。我們製作出金屬圓盤與金屬-絕緣體-金屬圓盤跟金屬橢圓盤陣列。經由光學穿透率量測,證實金屬-絕緣體-金屬圓盤之電漿交互作用的性質。
    結論,在本論文中發展出電漿輔助奈米球微影術與奈米球鏡微影術,對於參數的測試需要非常仔細並且達到最佳化,成功製作出蝴蝶結式奈米天線、奈米圓盤、奈米橢圓,這些奈米結構可以有新穎的應用在奈米光電與生醫光電的領域上。

    In this dissertation, two different types of nanofabrication techniques related to Nanosphere Lithography are developed. First, oxygen plasma treatment is introduced to assist the conventional Nanosphere Lithography. The “Plasma-Assisted Nanosphere Lithography” utilize the oxygen plasma to reduce the size of the closed-pack arrays of polystyrene nanospheres, resulting enlarged triangular openings between the nanospheres. Using this modified nanosphere arrays as shadow mask, triangle-shaped nanoparticle arrays with tunable sizes and inter-particle distances can be precisely fabricated. The minimum inter-particle distance is as small as 28 nm, which can also be referred as bowtie-nanoantenna arrays. The strong plasmonic coupling between nanoparticles is confirmed from the transmission spectra.
    The second method discussed in this research is referred as “Nanospherical-Lens Lithography”. A single layer of close-pack nanosphere arrays is aligned on top of un-exposed photoresist. The nanosphere acts as nanoscale spherical lens to focus the subsequently incident ultraviolet light. Round- and oval-shaped patterns reveal after photoresist development. This novel fabrication method is able to fabricate large-area nanodisk, whose diameters is as small as 230 nm. Fabrication of nano-ellipse arrays is also demonstrated when using a UV lamp as the light source. The long axis is around 650 nm and the short axis is about 280 nm. Metal and metal-insulator –metal nanodisks and nano-ellipse arrays are fabricated. Optical transmission measurements confirmed the existence of the plasmonic hybridization in the metal-insulator –metal nanodisk arrays.
    In summary, Plasma-Assisted Nanosphere Lithography and Nanospherical-Lens Lithography are developed in this research. Important parameters are carefully examed and optimized. Bowtie nanoantenna, nanodisk, and nano-ellipse arrays are successfully fabricated. These nanostructures can be used in various novel applications in the field of Nanophotonics and Biophotonics.

    中文摘要 Ⅰ 英文摘要 Ⅲ 致謝 Ⅵ 本文目錄 VII 表目錄 XI 圖目錄 XI 第一章 簡介 1 1-1 研究動機 1 1-2 奈米發展與製造技術 2 1-2.1 奈米發展技術 2 1-2.2 奈米製造技術 3 1-3 奈米球微影 4 1-3.1自組裝排列的機制 4 1-3.2 奈米球體的排列方式 5 1-3.3奈米球微影的技術 6 1-3.4奈米球微影的運用 8 1-4 光子晶體 12 1-5 表面電漿原理 15 1-5.1 表面電漿共振 15 1-5.2侷域性表面電漿共振 18 1-5.3奈米光學天線 21 第二章 實驗裝置及流程架構 25 2-1溶液與藥品 25 2-2實驗裝置-Convective self-assembly儀器 25 2-3 實驗流程架構 27 2-3.1金屬三角形陣列與網狀結構製程 27 2-3.2奈米洞結構與金屬橢圓盤及圓盤陣列 28 2-4 製程儀器 30 2-4.1 光罩對準儀 30 2-4.2 手提式紫外線燈 31 2-4.3 真空熱蒸鍍機 31 2-4.4 電子束蒸鍍機 32 2-4.5 電漿蝕刻清潔系統 32 2-5 量測儀器 34 2-5.1 掃描式電子顯微鏡 34 2-5.2 原子力顯微鏡 35 2-5.3 紫外線/可見光分光光譜儀 35 第三章 電漿輔助奈米球微影術與應用 37 3-1奈米球微影技術 37 3-1.1基板清潔與奈米球模板製作 37 3-1.2奈米球排列之介面活性劑的影響 39 3-1.3奈米球之蝕刻微縮與活性劑的關係 42 3-1.4 NSL結合預加熱與電漿蝕刻的機制 46 3-2 金屬奈米三角形與網狀陣列結構 47 3-2.1 電漿輔助奈米結構之分析 47 3-2.2 可控制的金屬奈米三角形陣列與網狀結構 49 3-2.3不同球徑下的金屬奈米陣列結構 53 3-3 奈米結構與粒子的電漿子性質 59 3-3.1粒子尺寸大小的研究 59 3-3.2電漿耦合之表面電漿研究 62 3-3.3各類因素之表面電漿研究 63 3-4 結論 65 第四章 奈米球鏡微影技術 66 4-1 奈米洞與奈米圓盤結構之研究 66 4-1.1 奈米球鏡微影術製成奈米光阻洞 66 4-1.2 曝光與顯影參數對奈米洞之變化 67 4-1.3奈米球鏡微影術結合奈米壓印 70 4-1.4電漿輔助奈米球鏡微影術 72 4-1.5奈米金屬圓盤陣列分析 73 4-2 橢圓光阻洞與奈米橢圓盤結構之分析 81 4-2.1 奈米橢圓光阻洞之變化 81 4-2.2光阻厚度於金屬橢圓盤尺寸之研究 84 4-3 奈米圓盤其電漿子性質之研究 88 4-4 結論 91 第五章 結論與未來展望 93 5-1結論 93 5-2未來展望 95 附錄 97 參考文獻 100

    [1] C.A.Volkert, A.M. Minor, Guest Editors, “Focused Ion Beam Microscopy and Micromachining,”MRSBulletin 32 (2007)

    [2] Rémi Longtin, Christian Fauteux, Louis-Philippe Carignan,“Laser-assisted synthesis of carbon nanofibers: From arrays to thin films and coatings”,Surface & Coatings Technology. 12, 2661-2669 (2008)

    [3] Anjeanette D. Ormonde, Erin C. M. Hicks, Jimmy Castillo, and Richard P. Van Duyne, “Nanosphere Lithography, Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy”, Langmuir. 16, 6927-6931 (2004)

    [4] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H.Yoshimura and K. Nagayama,“Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir .8, 3183-3190 (1992)

    [5] R. Micheletto, H. Fukuda, and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles”, Langmuir.8, 3333-3336 (1995)

    [6] K. H. Li and H. W. Choi, “Air-spaced GaN nanopillar photonic band gap structures patterned by nanosphere lithography”, JOURNAL OF APPLIED PHYSICS 109, 023107 (2011)

    [7] Yue Li, Eun Je Lee, Weiping Cai, Ki Yup Kim, and Sung Oh Cho, “Unconventional Method for Morphology-Controlled Carbonaceous Nanoarrays
    Based on Electron Irradiation of a Polystyrene Colloidal Monolayer”, ACSNANO Vol. 2 No. 6 (2008)

    [8] Chunxiao Cong, William Chandra Junus , Zexiang Shen , Ting Yu,“New Colloidal Lithographic Nanopatterns Fabricated by Combining Pre-Heating and Reactive Ion Etching,”Nanoscale Res Lett 4, 1324–1328 (2009)

    [9] C. C. Kao, Y. K. Su, Fellow, IEEE, C. L. Lin, and J. J. Chen,“Localized Surface Plasmon-Enhanced Nitride-BasedLight-Emitting Diode With Ag Nanotriangle Arrayby Nanosphere Lithography,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 13 (2010)

    [10] E. Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev Lett. 58, 2059(1987)

    [11] S. John,“Stromg localization of photons in certain disordered dielectric superlattices,” Phys. Rev Lett. 58, 2486(1987) [13] Xiaoyu Zhang, Erin M. Hicks, Jing Zhao, George C. Schatz, and Richard P. Van Duyne,“ Electrochemical Tuning of Silver Nanoparticles Fabricated by Nanosphere Lithography,”Nano Lett. 7, 1503-1507 (2005)

    [12] 欒丕綱,陳啟昌,“光子晶體---從蝴蝶翅膀到奈米光子學”五南圖書出版社

    [13] 張高德、欒丕綱“光子晶體中的波傳播” 物理雙月刊28,5 (2006)

    [14] John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn & Robert D. Meade, “Photonic Crystals: Molding the Flow of,”Princeton University Press, Princeton (1995)

    [15] Te-Hung Chang, Sheng-Hui Chen, Chia-Hua Chan, Yu-wen Yeh, Shih-Liang Ku, Cheng-Chung Lee, Chii-Chang Chen Eli Yablonovitch,“Fabrication of three-dimensional photoniccrystals using autocloning layers on the self-assembled microspheres,”Optical Engineering 48(7), 073401 (2009)

    [16]吳民耀,劉威志, “表面電漿子理論與模擬,” 物理雙月刊28,2 (2006)

    [17]周登科, “全場相位式表面電漿共振生醫感測器,” 碩士論文,國立中央大學

    [18]邱國斌,蔡定平,“金屬表面電漿簡介,”物理雙月刊28, 2 (2006)

    [19] Christy L. Haynes and Richard P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics”, J. Phys. Chem. B. 105, 5599-5611(2001)

    [20] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz,“Shape effects in plasmon resonance of individual colloidal silver nanoparticles”, J. Chem. Phys. 116, 6755(2002)

    [21] Xiaoyu Zhang, Erin M. Hicks, Jing Zhao, George C. Schatz, and Richard P. Van Duyne“Electrochemical Tuning of Silver Nanoparticles Fabricated by Nanosphere Lithography”, Nano Lett. 7, 1503-1507 (2005)

    [22] R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh“Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays,”PH YSICA L R EV I EW L ET T ERS Vol.92, No.3(2004)

    [23] Jian Zhang, Yi Fu, Mustafa H. Chowdhury, and Joseph R. Lakowicz“Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer:Coupling Effect between Metal Particles”,Nano Letters Vol. 7, No.7, 2101-2107 (2007)

    [24] Anika Kinkhabwala1, Zongfu Yu, Shanhui Fan, Yuri Avlasevich, Klaus Mullen and W. E. Moerner,“Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna”,Nature Photonics 3 (2009)

    [25] David P. Fromm, Arvind Sundaramurthy, P. James Schuck, Gordon Kino, W. E. Moerner“Gap-Dependent Optical Coupling of Single Bowtie Nanoantennas Resonant in the Visible,”Nano Lett. 4, 957-961 (2004)

    [26] Tzy-Rong Lin, Shu-Wei Chang, Shun Lien Chuang, Zhaoyu Zhang and
    P. James Schuck“Coating effect on optical resonance of plasmonic nanobowtie antenna,” APPLIED PHYSICS LETTERS 97, 063106 (2010)

    [27]成功大學微奈米研究中心,“掃描式電子顯微鏡原理與應用”操作手冊

    [28]曾重賓,氧電漿輔助奈米球微影術之研究與應用,碩士論文,國立成功大學(2010)

    [29] Adam Kosiorek, Witold Kandulski, Hanna Glaczynska, and Michael Giersig “Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks,”small 4, 439-444 (2005)

    [30] K. Piglmayer, R. Denk, and D. Bauerle,“Laser-induced surface patterning by means of microspheres”, Appl. Phys.Lett. 80, 4693 (2002)

    無法下載圖示 校內:2014-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE