簡易檢索 / 詳目顯示

研究生: 陳妍如
Chen, Yen-Ju
論文名稱: 細胞因子gC1qR在腸病毒A71型感染狀態下之細胞蛋白交互作用網絡及其在轉譯調控上可能扮演之角色
Cellular gC1qR-interactome during EV-A71 Infection and Its Possible Role in Translational Control
指導教授: 王憲威
Wang, Shainn-Wei
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 107
中文關鍵詞: 腸病毒A71型鞘蛋白VP4補體蛋白受體gC1qR共免疫沈澱法串連親和性沈澱法蛋白質體學分析轉譯調控
外文關鍵詞: Enterovirus A71, Viral capsid protein VP4, gC1qR, Co-immunoprecipitation, Tandem affinity purification, Proteomic analysis, Translational control
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸病毒71型(EV-A71)是正股單股RNA病毒,易感染幼童並引發手足口病和腦膜炎。了解和EV-A71有交互作用的細胞蛋白及其參與感染的生物機制,有助於建立抗病毒策略。實驗室先前結果顯示,細胞內的補體蛋白受體gC1qR與EV-A71鞘蛋白VP4有交互作用,且能在骨骼肌和神經元細胞中對病毒的複製產生負向調控。gC1qR是一種多功能細胞蛋白,更是多種病毒(例如HIV,EBV和HCV)作用的標的。為了了解EV-A71感染時gC1qR-VP4交互作用的功能以及參與反應的相關細胞因子,我們採用免疫沉澱法合併LC-MS/MS技術對EV-A71感染或無感染的HEK293T細胞之內源性gC1qR蛋白質體進行純化和分析。將EV-A71感染(EI)和假性感染(MI)的gC1qR蛋白質體以gC1qR濃度作內部校正,校準後的2042種蛋白質包含503個濃度變化超過±2倍具有顯著意義的蛋白,其中又有332個同時存在於EI和MI相關的gC1qR蛋白質體中。而在濃度變化> 2倍的149個蛋白質中,有61個獨特存在於EI相關的gC1qR蛋白質體中。此結果顯示內源性gC1qR蛋白質體之組成在EV-A71感染過程中的動態變化。我們更使用FunRich生物途徑分析軟體針對內源性gC1qR蛋白質體的2042個蛋白質進行Gene Ontology生物過程和生物途徑的預測。發現在感染期間,503個具有顯著意義的蛋白可能參與在蛋白質代謝和基因轉錄及轉譯的機制中。為了瞭解感染時與gC1qR有較為專一作用的細胞蛋白,我們進一步使用串聯親和純化(Tandem Affinity Purification, TAP)結合LC-MS/MS的蛋白質體分析方法來鑑定外源性gC1qR在細胞內的蛋白質體。gC1qR-SBP-6xHis及SBP-6xHis為兩種含串聯標籤SBP)和6xHis的外源性重組蛋白,我們以SBP-6xHis在感染時的蛋白質體作為控制組,並作為濃度變化的定量基準,發現有3個蛋白獨特存在於校準後的外源性gC1qR蛋白質體中。另外,藉由生物途徑分析內源性和外源性gC1qR蛋白質體,均比對出相同的37種蛋白顯著地參與在轉譯和蛋白質代謝機制中。更重要的是,通過多基因組交互作用的PINA4MS/Cytoscape應用軟體程序,對感染狀態下的gC1qR-interactome和先前已知的VP4-interacrome進行了比較分析,我們得到了一個VP4-gC1qR交互作用網絡,該網絡由40個包含gC1qR的細胞因子組成,並經由預測顯示參與病毒轉譯機制。為了驗證gC1qR在EV-A71的internal ribosome entry site (IRES)轉譯機制中的角色,我們建立了雙基因表達系統。將EV-A71 IRES插入海腎螢光素酶(Renilla luciferase)和螢火蟲螢光素酶(Firefly luciferase)基因之間,來監測宿主cap-dependent translation和EV-A71 IRES引導轉譯的效率。結果顯示降低gC1qR會同時使宿主和病毒的轉譯效率上升,而非單獨影響病毒IRES的轉譯機制,因此gC1qR可能在整體的細胞及病毒轉譯機制中扮演重要角色。此研究提供了gC1qR在EV-A71感染下的交互作用網絡及可能的生物機制,有助於EV-A71感染的關鍵細胞因子和機制的研究和了解。

    Enterovirus 71 (EV-A71) is a positive, single-stranded RNA virus of Picornaviridae family, which causes hand, foot and mouth disease (HFMD) and meningitides especially in young children. Understanding viral interacting cellular proteins and their possible interplays during EV-A71 infection is crucial for developing antiviral strategies. Our lab has previously shown that the globular C1q binding protein (gC1qR) is an intracellular interactor of EV-A71 capsid proteinVP4 and negatively modulates viral replication in skeletal muscle and neuron cells. Cellular gC1qR is multifunctional and a critical target of several viruses, such as HIV, EBV and HCV. To better understand the functional aspects of gC1qR-VP4 interaction and associating cellular factors during EV-A71 infection, endogenous gC1qR-interactome(s) in HEK293T cells with or without infection was investigated with a combined technique of Immunoprecipitation and LC-MS/MS. Internal normalization of gC1qR concentration from EV-A71 infection (EI) and mock-infection (MI) related gC1qR interactomes revealed a calibrated interactome of 2042 proteins that contains 503 players with greater than ± 2-fold significant change of concentration. Of the 503 players, 332 co-existed in both EI and MI-related gC1qR interactomes, while 149 had >2-fold concentration change including 61 that were exclusively found in EI-related interactome to account for the dynamic change of endogenous gC1qR interactome during EV-A71 infection. GO biological process and pathways prediction of distinct groups from the 2042 players with FunRich software suggested significant increase and decrease of the 503 interactors in protein metabolism with hypothetical roles in transcription/translational control during EV-A71 infection. To narrow down infection-specific gC1qR-interactors, a combined technique of Tandem-tag affinity purification (TAP) and LC-MS/MS was further conducted to identify an ectopic gC1qR interactome, which was calibrated between interactomes of infected cells that ectopically express a gC1qR-SBP-6xHis and the SBP-6xHis tandem-tag fusion proteins. Three distinct interactors were found after calibration between infection-related ectopic gC1qR-SBP-6xHis and ectopic SBP-6xHis interactomes, while comparison between calibrated endogenous and ectopic gC1qR-interactomes revealed 37 coplayers that all had significant increase of concentration. These 37 critical gC1qR interactors after functional pathway prediction were significantly involved in Translation and Protein metabolism. Furthermore, comparative analysis of critical players within calibrated gC1qR-interactoms and previous identified VP4-interacrome by PINA4MS/Cytoscape, an application for identifying interactions between and within multiple interactomes, revealed a distinctive network of 40 cellular factors, including gC1qR, in viral translation. Hence, a dual-luciferase assay was performed to verify the role of gC1qR on EV-A71 internal ribosome entry site (IRES)-mediated translation. A bicistronic reporter construct was established with EV-A71 IRES inserted within intergenic region between Renilla luciferase (Rluc) and Firefly luciferase (Fluc) genes. The expression of Rluc and Fluc were used to monitor the activities of cellular cap-dependent translation and viral IRES-mediated translation, respectively. Silence of gC1qR affected both host and viral translation rather than IRES-mediated translation of EV-A71 alone, gC1qR may play an important role in both cellular and viral translation machineries. More functional surveys of VP4-gC1qR interactors will be assessed through gene silencing. This study provides detail understanding of gC1qR-interacting cellular networks and paves the way to identify critical cellular factors and machineries involved during EV-A71 infection.

    摘要 i Abstract iii Acknowledgements v Index vi Figure Index ix Table Index x Introduction 1 Enterovirus A71 epidemiology 1 EV-A71 Genome and structure 1 EV-A71 IRES translation 2 Tandem affinity purification (TAP) 3 EV-A71 VP4 and its interacting cellular proteins 3 The globular head of C1q complement receptor, gC1qR 4 The role of gC1qR in EV-A71 infection 5 Rationales and hypotheses of this study 7 Materials and Methods 9 Antibodies 9 Reagents 9 Cells 10 Enterovirus A71 (EV-A71) 12 Plaque assay and viral titer 12 Plasmids and constructs 13 Plasmid transfection 15 Immunoprecipitation 16 Tandem affinity purification 16 Silver staining 17 Western blot assay 18 LC-MS/MS 19 Label-free peptide quantification and identification 19 Computational analysis of protein-protein interaction 20 Dual-luciferase assay 20 Cellular RNA extraction 21 Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction (qRT-PCR) 22 Results 23 Isolation of EV-A71 infection and mock-infection related endogenous gC1qR-interactome complexes 23 Total of 1932 and 1981 protein species are identified as EV A71-infection and Mock-infection related endogenous-gC1qR interactomes, respectively. 24 503 protein species have significant change of concentration from a calibrated endogenous gC1qR interactome in responding to EV-A71 infection 24 Biological process and pathway analyses of critical components of the infection-calibrated endogenous gC1qR interactome revealed dynamic change of gC1qR interactors for cellular or viral protein metabolism 26 Ectopic expressions of the pMSCV-hgC1qR-SBP-6xHis and its control vector pMSCF-SBP-6xHis results in in-frame expression of 36 and 17 kDa proteins, respectively 28 Tandem affinity purification (TAP) of protein complexes that are associated with ectopic gC1qR-SBP-His and SBP-His tag from EV-A71 infected HEK293T cells 29 37 protein species are cross-identified from both infection-calibrated endogenous and ectopic gC1qR-interactome 31 Three co-identified cellular proteins and 40 members from interactomes of EV-A71 VP4 and gC1qR are networked for viral or cellular translational machineries for protein metabolism 32 Silencing of gC1qR promots both CAP and IRES-mediated translational control 34 Discussion 37 References 48 Figures 53 Tables 63 Supplementary data 76 Appendix 101

    1. Ho M, Chen ER, Hsu KH, Twu SJ, Chen KT, Tsai SF, Wang JR, Shih SR: An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med 1999, 341:929-935.
    2. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH: Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 2010, 10:778-790.
    3. Chan KP, Goh KT, Chong CY, Teo ES, Lau G, Ling AE: Epidemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerg Infect Dis 2003, 9:78-85.
    4. Yuan J, Shen L, Wu J, Zou X, Gu J, Chen J, Mao L: Enterovirus A71 Proteins: Structure and Function. Front Microbiol 2018, 9:286.
    5. Liu Q, Huang X, Ku Z, Wang T, Liu F, Cai Y, Li D, Leng Q, Huang Z: Characterization of enterovirus 71 capsids using subunit protein-specific polyclonal antibodies. J Virol Methods 2013, 187:127-131.
    6. Pelletier J, Sonenberg N: Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988, 334:320-325.
    7. Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E: A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 1988, 62:2636-2643.
    8. Beales LP, Rowlands DJ, Holzenburg A: The internal ribosome entry site (IRES) of hepatitis C virus visualized by electron microscopy. RNA 2001, 7:661-670.
    9. Borman A, Jackson RJ: Initiation of translation of human rhinovirus RNA: mapping the internal ribosome entry site. Virology 1992, 188:685-696.
    10. Bieleski L, Talbot SJ: Kaposi's sarcoma-associated herpesvirus vCyclin open reading frame contains an internal ribosome entry site. J Virol 2001, 75:1864-1869.
    11. Pestova TV, Shatsky IN, Hellen CU: Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol Cell Biol 1996, 16:6870-6878.
    12. Thompson SR, Sarnow P: Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology 2003, 315:259-266.
    13. Joachims M, Van Breugel PC, Lloyd RE: Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol 1999, 73:718-727.
    14. Shih SR, Stollar V, Li ML: Host factors in enterovirus 71 replication. J Virol 2011, 85:9658-9666.
    15. Gunzl A, Schimanski B: Tandem affinity purification of proteins. Curr Protoc Protein Sci 2009, Chapter 19:Unit 19 19.
    16. Xu L, Xiao N, Liu F, Ren H, Gu J: Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria. Proc Natl Acad Sci U S A 2009, 106:1530-1535.
    17. Peerschke EI, Murphy TK, Ghebrehiwet B: Activation-dependent surface expression of gC1qR/p33 on human blood platelets. Thromb Haemost 2003, 89:331-339.
    18. Huang L, Chi J, Berry FB, Footz TK, Sharp MW, Walter MA: Human p32 is a novel FOXC1-interacting protein that regulates FOXC1 transcriptional activity in ocular cells. Invest Ophthalmol Vis Sci 2008, 49:5243-5249.
    19. van Leeuwen HC, O'Hare P: Retargeting of the mitochondrial protein p32/gC1Qr to a cytoplasmic compartment and the cell surface. J Cell Sci 2001, 114:2115-2123.
    20. Petersen-Mahrt SK, Estmer C, Ohrmalm C, Matthews DA, Russell WC, Akusjarvi G: The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J 1999, 18:1014-1024.
    21. Yoshikawa H, Komatsu W, Hayano T, Miura Y, Homma K, Izumikawa K, Ishikawa H, Miyazawa N, Tachikawa H, Yamauchi Y, et al: Splicing factor 2-associated protein p32 participates in ribosome biogenesis by regulating the binding of Nop52 and fibrillarin to preribosome particles. Mol Cell Proteomics 2011, 10:M110 006148.
    22. Nguyen T, Ghebrehiwet B, Peerschke EI: Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for staphylococcal interactions with platelets. Infect Immun 2000, 68:2061-2068.
    23. Feichtinger RG, Olahova M, Kishita Y, Garone C, Kremer LS, Yagi M, Uchiumi T, Jourdain AA, Thompson K, D'Souza AR, et al: Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies. Am J Hum Genet 2017, 101:525-538.
    24. Jacobs JL, Coyne CB: Mechanisms of MAVS regulation at the mitochondrial membrane. J Mol Biol 2013, 425:5009-5019.
    25. Matsumoto K, Kose S, Kuwahara I, Yoshimura M, Imamoto N, Yoshida M: Y-box protein-associated acidic protein (YBAP1/C1QBP) affects the localization and cytoplasmic functions of YB-1. Sci Rep 2018, 8:6198.
    26. Wang Y, Yang Y, Wu S, Pan S, Zhou C, Ma Y, Ru Y, Dong S, He B, Zhang C, Cao Y: p32 is a novel target for viral protein ICP34.5 of herpes simplex virus type 1 and facilitates viral nuclear egress. J Biol Chem 2014, 289:35795-35805.
    27. Song X, Yao Z, Yang J, Zhang Z, Deng Y, Li M, Ma C, Yang L, Gao X, Li W, et al: HCV core protein binds to gC1qR to induce A20 expression and inhibit cytokine production through MAPKs and NF-kappaB signaling pathways. Oncotarget 2016, 7:33796-33808.
    28. Du Q, Huang Y, Wang T, Zhang X, Chen Y, Cui B, Li D, Zhao X, Zhang W, Chang L, Tong D: Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via Cap interaction of gC1qR. Oncotarget 2016, 7:17492-17507.
    29. Kipper S, Hamad S, Caly L, Avrahami D, Bacharach E, Jans DA, Gerber D, Bajorek M: New host factors important for respiratory syncytial virus (RSV) replication revealed by a novel microfluidics screen for interactors of matrix (M) protein. Mol Cell Proteomics 2015, 14:532-543.
    30. Pei-Ling Tsai, Shainn-Wei Wang: Cellular gC1qR promotes mitochondria-dependent apoptosis via p38 MAPK activation in Enterovirus A71 infected neuron cell. National Cheng Kung University, Institute of Molecular Medicine; 2018.
    31. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 2006, 1:2856-2860.
    32. Gaudet P, Livstone MS, Lewis SE, Thomas PD: Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief Bioinform 2011, 12:449-462.
    33. Petersen-Mahrt SK, Estmer C, Ohrmalm C, Matthews DA, Russell WC, Akusjärvi G: The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J 1999, 18:1014-1024.
    34. Peerschke EI, Ghebrehiwet B: The contribution of gC1qR/p33 in infection and inflammation. Immunobiology 2007, 212:333-342.
    35. Jagdeo JM, Dufour A, Fung G, Luo H, Kleifeld O, Overall CM, Jan E: Heterogeneous Nuclear Ribonucleoprotein M Facilitates Enterovirus Infection. J Virol 2015, 89:7064-7078.
    36. Tolbert M, Morgan CE, Pollum M, Crespo-Hernández CE, Li ML, Brewer G, Tolbert BS: HnRNP A1 Alters the Structure of a Conserved Enterovirus IRES Domain to Stimulate Viral Translation. J Mol Biol 2017, 429:2841-2858.
    37. Balyeva KE, Malygin AA, Karpova GG, Nevinskiĭ GA, Zharkov DO: [Interactions of human ribosomal protein S3 with undamaged and damaged DNA]. Mol Biol (Mosk) 2008, 42:314-322.
    38. Kim Y, Kim HD, Kim J: Cytoplasmic ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial DNA damage surveillance. Biochim Biophys Acta 2013, 1833:2943-2952.
    39. Jang CY, Lee JY, Kim J: RpS3, a DNA repair endonuclease and ribosomal protein, is involved in apoptosis. FEBS Lett 2004, 560:81-85.
    40. Lee SB, Kwon IS, Park J, Lee KH, Ahn Y, Lee C, Kim J, Choi SY, Cho SW, Ahn JY: Ribosomal protein S3, a new substrate of Akt, serves as a signal mediator between neuronal apoptosis and DNA repair. J Biol Chem 2010, 285:29457-29468.
    41. Singh N, Jindal S, Ghosh A, Komar AA: Communication between RACK1/Asc1 and uS3 (Rps3) is essential for RACK1/Asc1 function in yeast Saccharomyces cerevisiae. Gene 2019, 706:69-76.
    42. Turner-Ivey B, Manevich Y, Schulte J, Kistner-Griffin E, Jezierska-Drutel A, Liu Y, Neumann CA: Role for Prdx1 as a specific sensor in redox-regulated senescence in breast cancer. Oncogene 2013, 32:5302-5314.
    43. Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, et al: Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 2012, 149:1393-1406.
    44. de Breyne S, Bonderoff JM, Chumakov KM, Lloyd RE, Hellen CU: Cleavage of eukaryotic initiation factor eIF5B by enterovirus 3C proteases. Virology 2008, 378:118-122.
    45. Sweeney TR, Abaeva IS, Pestova TV, Hellen CU: The mechanism of translation initiation on Type 1 picornavirus IRESs. EMBO J 2014, 33:76-92.
    46. Reineke LC, Lloyd RE: Diversion of stress granules and P-bodies during viral infection. Virology 2013, 436:255-267.
    47. Tsai WC, Lloyd RE: Cytoplasmic RNA Granules and Viral Infection. Annu Rev Virol 2014, 1:147-170.
    48. Lloyd RE: Enterovirus Control of Translation and RNA Granule Stress Responses. Viruses 2016, 8:93.
    49. Solomon S, Xu Y, Wang B, David MD, Schubert P, Kennedy D, Schrader JW: Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs. Mol Cell Biol 2007, 27:2324-2342.
    50. Tourrière H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, Tazi J: The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 2003, 160:823-831.
    51. Ng CS, Jogi M, Yoo JS, Onomoto K, Koike S, Iwasaki T, Yoneyama M, Kato H, Fujita T: Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses. J Virol 2013, 87:9511-9522.
    52. Dougherty JD, White JP, Lloyd RE: Poliovirus-mediated disruption of cytoplasmic processing bodies. J Virol 2011, 85:64-75.
    53. Zheng D, Ezzeddine N, Chen CY, Zhu W, He X, Shyu AB: Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J Cell Biol 2008, 182:89-101.
    54. Lloyd RE: Regulation of stress granules and P-bodies during RNA virus infection. Wiley Interdiscip Rev RNA 2013, 4:317-331.

    下載圖示 校內:2024-12-01公開
    校外:2024-12-01公開
    QR CODE