| 研究生: |
戴子鈞 Tai, Tzu-Chun |
|---|---|
| 論文名稱: |
微波分析與透明導電薄膜在成像系統與5G晶片上傳輸線元件之應用 Microwave Analysis and Transparent Conducting Thin Films on Imaging System and 5G On-Chip Transmission Line Device Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 共同指導: |
吳宏偉
Wu, Hung-Wei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 高介電常數 、材料特性 、微波特性 、平均功率承載能力 、透明導電膜 、微波成像系統 |
| 外文關鍵詞: | high-K dielectric, material characteristic, microwave characteristic, APHC, transparent conducting film, microwave imaging system |
| 相關次數: | 點閱:161 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分成三大部分:(a)high-K 介電薄膜與透明導電薄膜之製備;(b)高阻值材料與導電材料之微波特性量測與分析;(c)透明被動元件與微波成像系統之設計與應用。
在第一部分中,本論文提出一種薄膜表面披覆技術將一層high-K介電薄膜製作於介電基板上方,以提高及改善原生介電基板的微波特性。本論文中提出兩種介電薄膜材料分別製作於低阻值標準矽晶及高阻值商用陶瓷材料基板表層,再於其上方製作一薄膜共面波導傳輸線,探討其微波特性與平均功率承載能力。該薄膜共面波導傳輸線與表面披覆技術分別可應用於5G晶片級系統與商用介電基板中。
本研究亦發展一種高效率透明導電薄膜,藉由標準半導體製程技術將導電金屬薄膜製作成微米級網狀結構以達成高透明(~75%)、低阻值(~10-8Ω-m)、厚膜(>3µm)以及半導體製程相容性。該透明導電薄膜可製作於玻璃基板、軟性基板及其他透明材料上方達到廣泛應用於5G天線及濾波器元件之目的。
此外,本研究發展一套微波量測技術,將其應用於5G技術之介電薄膜、導電薄膜、元件與系統之分析與評估藉此改善微波特性從而獲得最佳方案。該方法可精確量測各式單層與雙層介電材料之微波特性。該有限接地共面波導法經校正到60GHz後,可量測並萃取出微波衰減、介電常數與特性阻抗並計算平均功率承載能力。
最後,本研究藉由微波特性分析方法開發一微波成像系統,並將其應用於物體內部之非破壞性感測與成像。該系統具有相當多的內容討論,如傳輸特性、天線設計、天線特性、操作頻率、感測區域、模擬驗證、介電成像及影像解析度。在此研究中使用大量的分析與案例比較,藉此發揮其最佳性能以應用於食物安全檢測及微波基板材料之介電特性鑑定。
The dissertation divides into three parts: (a) preparation of high-K dielectric thin film and transparent conducting film; (b) microwave measurement and analysis of the dielectric and conducting material; (c) design of transparent passive device and imaging system.
In the first part of the dissertation, we propose a thin-film-passivation technology fabricating a high-K thin film on the surface of dielectric substrate to enhance and improve the microwave properties. The thin films are fabricated, respectively, on the surface of low-resistivity silicon (LRS) and high-resistivity ceramic (HRS) with proposed two kinds of material. The coplanar waveguide line (CPW) is fabricated on top of the dielectric thin film to investigate the microwave characteristics and the average power handling capability (APHC). The thin-film CPW and thin-film-passivation technology can be applied on the interconnection of system on chip (SoC) and dielectric substrate.
This dissertation has developed a high-performance transparent conducting thin film by using standard semiconductor process technology. The conducting metal film is made of a micromesh structure to achieve high transparency (~75 %), low resistivity (~10-8 Ω-m) and thick film (>3 µm). The high-performance transparent conducting thin film can be made on glass substrate, flexible substrate and other transparent material for extensively applications of antenna and filter in 5G system.
In the second part of the dissertation, a microwave characteristic measurement technology has been developed to analyze, evaluate and improve the properties of dielectric thin film and conducting thin film devices so as to find the best candidate. The method can precisely measure the microwave properties of single- and double-layer dielectric material. As a result, the microwave attenuation, dielectric constant, characteristic impedance and APHC were extracted from calibrated measurements made at up to 60 GHz using the CPW method.
Finally, according to the microwave analysis method, a microwave imaging system is developed to sense and visualize the images of object. The system was used in this study to discuss issues, such as transmission properties, antenna design, antenna properties, operating frequency, sensing region, simulated verification and resolution of image. The microwave imaging sensing system provides a simple, nondestructive, effective and rapid method for the application of food safety inspection.
[1] J. Y. C. Chang, A. A. Abidi and M. Gaitan, “Large suspended inductors on silicon and their use in a 2-μm CMOS RF amplifier,” IEEE Electron Device Lett., vol. 14, no. 5, pp. 246-248, May 1993.
[2] H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high-resistivity silicon,” IEEE Microw. Guided Wave Lett., vol. 9, no. 10, pp. 395-397, Oct. 1999.
[3] K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, J. Liu, S. C. Chien, D. S. Duh and W. J. Lin, “Low RF noise and power loss for ion-implanted Si having an improved implantation process,” IEEE Electron. Device Lett., vol. 24, no. 1, pp. 28-30, Jan. 2003.
[4] K. J. Herrick, T. A. Schwarz and L. P. B. Katehi, “Si-micromachined coplanar waveguides for use in high-frequency circuits,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 6, pp. 762-768, Jun. 1998.
[5] G. E. Ponchak, A. Margomenos, L. P. B. Katehi, “Low-loss CPW on low-resistivity Si substrates with a micromachined polyimide interface layer for RFIC interconnects,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 49, pp. 866-870, May 2001.
[6] Lydia. L. W. Leung, W. C. Hon and K. J. Chen, “Low-loss coplanar waveguides interconnects on low-resistivity silicon substrate,” IEEE Trans. Compon. Packaging Technol., vol. 27, no. 3, pp. 507-512, Sep. 2004.
[7] V. V. Levenets, N. G. Tarr, T. J. Smy and J. W. M. Rogers, “Characterization of silver CPWs for applications in silicon MMICs,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 357-359, Jun. 2005.
[8] G. E. Ponchak and A. N. Downey, “Characterization of thin film microstrip lines on polyimide,” IEEE Trans. comp. pack. Manufact. Technol., vol. 21, no. 2, pp. 171-176, May 1998.
[9] G. E. Ponchak and L. P. B. Katehi, “Measured attenuation of coplanar waveguide on CMOS grade silicon substrate with polyimide interface layer,” IEE Electron. Lett., vol. 34, no. 13, pp. 1327-1329, Jun. 1998.
[10] L. L. W. Leung, W. C. Hon and K. J. Chen, “Low-loss coplanar waveguides interconnects on low-resistivity silicon substrate,” IEEE Trans. Comp., Packag., Manufact. Technol., vol. 27, no. 3, pp. 507-512, Sep. 2004.
[11] G. Six, G. Prigent, G. Dambrine and H. Happy, “Fabrication and characterization of low-loss TFMS on 138 silicon substrate up to 220 GHz,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 301-305, Jan. 2005.
[12] W. S. Kim, T. H. Hong, E. S. Kim and K. H. Yoon, “Microwave dielectric properties and far infrared reflectively spectra of the (Zr0.8, Sn0.2) TiO4 ceramics with additives,” Jpn. J. Appl. Phys., vol. 37, pp. 5367-5371, 1998.
[13] R. Kudesia, A. E. Mchale and R. L. Snyder, “Effect of LaO2/ZnO additives on microstructure and microwave dielectric properties of Zr0.8Sn0.2TiO4 ceramics,” J. Am. Ceram. Soc., vol. 77, pp. 3215-3220, 1994.
[14] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method,” IEEE Trans. Microw. Theory and Tech., vol. 33, no. 7, pp. 586-592, Jul. 1985.
[15] R. L. Peterson and R. F. Drayton, “A CPW T-resonator technique for electrical characterization of microwave substrates,” IEEE Microwave and Guided Wave Lett., vol. 12, no. 3, pp. 90-92, Mar. 2002.
[16] S. A. Ivanov and V. N. Peshlov, “Ring-resonator method - effective procedure for investigation of microstrip line,” IEEE Microw. and Guided Wave Lett., vol. 13, no. 6, pp. 244-246, Jun. 2003.
[17] L. H. Hsieh and K. Chang, “Equivalent lumped elements G, L, C, and unloaded Q's of closed- and open-loop ring resonators,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 453-460, Feb. 2002.
[18] F. Xiangyi, L. David, W. Chris and C. Brian, “Dielectric constant characterization using a numerical method for the microstrip ring resonator,” Microw. and Optical Tech. Lett., vol. 41, no. 1, pp. 14-17, Apr. 2004.
[19] M. D. Janezic and J. A. Jargon, “Complex permittivity determination from propagation constant measurements,” IEEE Microw. and Wireless Components Lett., vol. 9, no. 2, pp. 76-78, Feb. 1999.
[20] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. on Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, pp. 483-490, Aug. 1992.
[21] Y. Eo and W. R. Eisenstadt, “High-speed VLSI interconnect modeling based on S-parameter measurements,” IEEE Trans. on Comp., Hybrids, Manufact. Technol., vol. 16, no. 5, pp. 555-562, Aug. 1993.
[22] D. M. Pozar, Microwave Engineering, Second Edition. John Wiley & Sons, Inc., 1998.
[23] G. L. Matthaei, L. Young and E. M. T. Jone, Microwave filters, impedance-maching networks and coupling structures, New York, McGraw Hill, 1964.
[24] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/Microwave applications, John Wiley & Sons, Inc., 2001.
[25] T. C. Edwards and M. J. Lancaster, Foundations of interconnect and microstrip design. reading, John Wiley and Sons, 2000.
[26] C. Veyres and V. F. Hanna, “Extension of the application of conformal mapping techniques to coplanar lines with finite dimensions,” Int. J. Electron., vol. 48, no. 1, pp. 47-56, Jan. 1980.
[27] The TE Connectivity Corporation, White Paper: Mass Connectivity in the 5G Era, Jul. 2018.
[28] D. M. Pozar, Microwave engineering, Second Edition, John Wiley & Sons, Inc., 1998.
[29] R. E. Collin, Foundations for microwave engineering, Second Edition, New York:McGraw-Hill, pp. 178-179, 1992.
[30] R. N. Simons, Coplanar waveguide circuits, components, and systems, New York: John Wiley & Sons, 2001.
[31] K. C. Gupta, R. Garg, I. J. Bahl and P. Bhartia, Microstrip lines and slotlines, Second Edition, Artech House Inc., Norwood, MA, pp.91-92, 1996.
[32] G. E. Ponchak, A. Margomenos and L. P. B. Katehi, “Low-loss CPW on low-resistivity Si substrates with a micromachined polyimide interface layer for RFIC interconnects,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 866–870, May 2001.
[33] L. L. W. Leung, W. C. Hon and K. J. Chen, “Low-loss coplanar waveguides interconnects on low-resistivity silicon substrate,” IEEE Trans. Compon. Packag. Techn., vol. 27, no. 3, pp. 507–512, Sep. 2004.
[34] V. V. Levenets, N. G. Tarr, T. J. Smy and J. W. M. Rogers, “Characterization of silver CPWs for applications in silicon MMICs,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 357–359, Jun. 2005.
[35] R. R. Tummala and E. J. Rayaszewski, Microelectronic Packing Handbook, Van Nostrand Reinold, New York, 1989.
[36] J. Baliga, System-in-package uses silicon substrate, Semicond. Int. vol. 27, pp. 32, 2004.
[37] ITRS, Interconnect Chapter. 2007.
[38] M. Vogt and R. Hauptmann, “Plasma-deposited passivation layers for moisture and water protection,” Surf. Coat. Technol., vol. 74, pp. 676-681, Oct. 1995.
[39] Z. G. Duan, Z. Y. Zhao and P. Z. Yang, “Electronic structure and optical properties of Si–O–N compounds with different crystal structures,” RSC Adv., vol. 4, pp. 36485-36493, Aug. 2014.
[40] J. Dupuis, E. Fourmond, J. F. Lelièvre, D. Ballutaud and M. Lemiti, “Impact of PECVD SiON stoichiometry and post-annealing on the silicon surface passivation,” Thin Solid Films., vol. 516, pp. 6954-6958, Aug. 2008.
[41] Y. T. Kim, S. M. Cho, Y. G. Seo, H. D. Yoon, Y. M. Im and D. H. Yoon, “Influence of hydrogen on SiON thick film for silica waveguide deposited by PECVD and annealing effect,” Surf. Coat. Tech., vol. 173, pp. 204-207, Sep. 2003.
[42] I. J. Bahl and K. C. Gupta, “Average power-handling capability of microstrip lines,” IEE J. on Microw. Opt. and Acoust., vol. 3, pp. 1-4, Jan. 1979.
[43] I. J. Bahl, “Average power handling capability of multilayer microstrip lines,” Int. J. RF Microw. Comput-Aid. Eng., vol. 11, pp. 385-395, Oct. 2001.
[44] W. Y. Yin, X. T. Dong, J. Mao and L. W. Li, “Average power handling capability of finite-ground thin-film microstrip lines over ultra-wide frequency ranges,” IEEE Microw. Wirel. Compon. Lett., vol. 15, pp. 715-717, Oct. 2005.
[45] S. P. Wang, T. C. Tai, J. H. Lin, C. Y. Hung, H. W. Wu, Y. H. Wang and S. K. Liu, “Microwave characteristic of SiON thin film surface passivation on low resistivity silicon wafer,” 2018 IEEE Int. Conf. on Appl. System Invent. (ICASI)., pp. 1125-1128, Apr. 2018.
[46] W. Y. Yin, Y. J. Zhang, X. T. Dong and Y. B. Gan, “Average power-handling capability of the signal line in coplanar waveguides on polyimide and GaAs substrates including the irregular line edge shape effects,” Int. J. RF Microw. Comput-Aid. Eng., vol. 15, pp. 156-163, 2005.
[47] A. Szekeres, T. Nikolova, A. Paneva, A. Cziraki, Gy. J. Kovacs, I. Lisovskyy, D. Mazunov, I. Indutnyy and P. Shepeliavyi, “Silicon nanoparticles in thermally annealed thin silicon monoxide films,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., vol. 124, pp. 504-507, 2005.
[48] B. Sun, P. Wang, B. Ma, J. Deng and J. Luo, “Effects of annealing on the temperature coefficient of resistance of nickel film deposited on polyimide substrate,” Vacuum., vol. 160, pp. 18-24, 2019.
[49] M. Kumar and R. Mitra, “Effect of substrate temperature and annealing on structure, stress and properties of reactively co-sputtered Ni-TiN nanocomposite thin films,” Thin Solid Films., vol. 624, pp. 70-82, 2017.
[50] K. L. Chopra, Thin Film Phenomena, 1969.
[51] C. Schöllhorn, M. Oehme, M. Bauer and E. Kasper, “Coalescence of germanium islands on silicon,” Thin Solid Films., vol. 336, pp. 109-111, 1998.
[52] V. Kanneboinaa, R. Madakaa and P. Agarwal, “Spectroscopic ellipsometry studies on microstructure evolution of a-Si:H to nc-Si:H films by H2 plasma exposure,” Mater. Today., vol. 15, pp. 18-29, 2018.
[53] C. Loka, K. Lee, S. W. Moon, Y. Choi and K. S. Lee, “Enhanced transmittance of sapphire by silicon oxynitride thin films annealed at high temperatures,” Mater. Lett., vol. 213, pp. 354-357, 2018.
[54] A. J. Kenyon, P. F. Trwoga and C. W. Pitt, “The origin of photoluminescence from thin films of silicon-rich silica,” J. Appl. Phys., vol. 79, pp. 9291-9300, 1996.
[55] J. Dupuis, E. Fourmond, D. Ballutaud, N. Bererd and M. Lemiti, “Optical and structural properties of silicon oxynitride deposited by plasma enhanced chemical vapor deposition,” Thin Solid Films., vol. 519, pp. 1325-1333, 2010.
[56] D. Lederer and J. P. Raskin, “New substrate passivation method dedicated to HR SOI wafer fabrication with increased substrate resistivity,” IEEE Electron Device Lett., vol. 26, pp. 805-807, 2005.
[57] C. Y. Hung and M. H. Weng, “Investigation of the silicon substrate with different substrate resistivities for integrated filters with excellent performance,” IEEE Trans. Electron Devices., vol. 9, pp. 1164-1171, 2012.
[58] H. W. Wu and M. H. Weng, “Average power handling capability of thin film microstrip line under dc-bias conditions,” Microw. Opt. Technol. Lett., vol. 53, pp. 84-87, 2011.
[59] R. E. Collin, Foundations for Microwave Engineering, Second Edition, McGraw-Hill International Editions, New York, 1992.
[60] C. J. Chen, R. L. Wang, Y. K. Su and T. J. Hsueh, “A nanocrystalline silicon surface-passivation layer on an HR-Si substrate for RFICs,” IEEE Electron Device Lett., vol. 32, pp. 369-371, 2011.
[61] T. C. Tai, H. W. Wu, Y. H. Wang and C. T. Chiu, “Microwave characteristics of thin film passivation on ceramic substrate by using DC reactive magnetron sputtering,” IEEE Trans Compon. Packag. Manuf. Technol., vol. 8, pp. 1800-1806, 2018.
[62] T. Hiraoka, T. Tokumitsu and M. Aikawa, “Very small wide-band MMIC magic T's using microstrip lines on a thin dielectric film,” IEEE Trans. Microw. Theory Tech., vol. 37, pp. 1569-1575, 1989.
[63] I. J. Bahl and K. C. Gupta, “Average power-handling capability of microstrip lines,” IEE Microwave Opt Acoust., vol. 3, no. 1, pp. 1-4, Jan. 1979.
[64] I. J. Bahl, “Average power handling capability of multiplayer microstrip lines,” Int J RF Microwave CAE., vol. 11, pp. 385-395, May 2001.
[65] W. Y. Yin, X. T. Dong, J. Mao and L. W. Li, “Average power handling capability of finite-ground thin-film microstrip lines over ultra-wide frequency ranges,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 715–717, Oct. 2005.
[66] H. W. Wu and M. H. Weng, “Average power handling capability of thin-film microstrip line under dc-bias conditions,” Microwave & Optical Technology Lett., vol. 53, no. 1, pp. 84–87, Jan. 2011.
[67] W. J. Meng, J. A. Sell, T. A. Perry, L. E. Rehn and P. M. Baldo, “Growth of aluminum nitride thin films on Si(111) and Si(001): structural characteristics and development of intrinsic stresses,” J. Appl. Phys., vol. 75, pp. 3446-3455, May 1994.
[68] L. E. McNeil, M. Grimsditch and R. H. French, “Vibrational spectroscopy of aluminum nitride,” J. Am. Ceram. Soc., vol. 76, no. 7, pp. 1132-1136, May 1993.
[69] X. T. Hao, L. W. Tan, K. S. Ong and F. Zhu, “High-performance low-temperature transparent conducting aluminum-doped ZnO thin films and applications,” J. Cryst. Growth., vol. 287, pp. 44-47, Jan. 2006.
[70] B. D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley, Readind, MA,), pp. 102, 1978.
[71] X. H. Xu, H. S. Wu, C. J. Zhang and Z. H. Jin, “Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering,” Thin Solid Films, vol. 388, pp. 62–67, Dec. 2001.
[72] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Park and G. Stephenson, “Ferroelectric thin films: review of materials, properties and applications,” J. Appl. Phys., vol. 100, pp. 51606, Sep. 2006.
[73] T. Salkus, E. Kazakevicius, J. Banys, M. Kranjcec, A. A. Chomolyak, Y. Y. Neimet and I. P. Studenyak, “Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics,” Solid State Ionics., vol. 262, pp. 597-600, Sep. 2013.
[74] H. Zeng, Y. Wu, J. X. Zhang, C. J. Kuang, M. Yue and S. X. Zhou, “Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals,” Prog. Nat. Sci., vol. 23, pp. 18-22, Feb. 2013.
[75] W. Y. Yin and W. S. Zhao, Modeling and characterization of on-chip interconnects, in Wiley Encyclopedia Elect. Electron. Eng., USA, NJ, Hoboken:Wiley, pp. 1-18, 2013.
[76] M. A. Malek, S. Hakimi, S. K. Abdul Rahim and A. K. Evizal, “Dual-band cpw-fed transparent antenna for active RFID tags,” IEEE Antennas and Wireless Propag. Lett., vol. 14, pp. 919-922, Apr. 2014.
[77] S. Hong, S. H. Kang, Y. Kim and C. W. Jung, “Transparent and flexible antenna for wearable glasses applications,” IEEE Trans. Antennas Propag., vol. 64, no. 07, pp. 2797-2804, Jul. 2016.
[78] M. R. Haraty, M. Naser-Moghadasi, A. A. Lotfi-Neyestanak and A. Nikfarjam, “Improving the efficiency of transparent antenna using gold nanolayer deposition,” IEEE Antennas and Wireless Propag. Lett., vol. 15, pp. 4-7, Aug. 2016.
[79] R. B. Green, M. Toporkov, M. D. B. Ullah, V. Avrutin, U. Ozgur, H. Morkoc and E. Topsakal, “An alternative material for transparent antennas for commercial and medical applications,” Microwave Opt. Technol. Lett., vol. 59, pp. 773-777, Apr. 2017.
[80] O. Yurduseven, D. Smith and M. Elsdon, “A transparent meshed solar monopole antenna for UWB applications,” IEEE European Conference on Antennas and Propagation, pp. 2145-2149, Jan. 2014.
[81] S. Hong, Y. Kim and C. W. Jung, “Transparent microstrip patch antennas with multilayer and metal mesh films,” IEEE Antennas and Wireless Propagation Lett., vol. 16, pp. 772-775, Aug. 2016.
[82] T. Jang, C. Zhang, H. Youn, J. Zhou and L. J. Guo, “Semitransparent and flexible mechanically reconfigurable electrically small antennas based on tortuous metallic micromesh,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 1, pp. 150-158, Jan. 2017.
[83] Q. L. Li, S. W. Cheung, Di Wu and T. I. Yuk, “Optically transparent dual-band MIMO antenna using micro-metal mesh conductive film for WLAN system,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 920-923, Sep. 2016.
[84] J. Wang, Y. Guan and S. He, “Transparent 5.8 GHz filter based on graphene,” IEEE MTT-S International Microwave Symposium (IMS), Jun. 2017.
[85] T. C. Tai, H. W. Wu, Y. H. Wang and C. T. Chiu, “Microwave characteristics of thin-film passivation on ceramic substrate by using DC reactive magnetron sputtering,” IEEE Trabsactions on Componens Packaging and Manufacturing Technology, vol. 8, no. 10, pp. 1800-1806, Jan. 2014.
[86] IE3D Simulator, Zeland Software, Inc., 2002
[87] E. C. Fear, S. C. Hagness, P. M. Meaney, M. Okonieweski, M. A. Stuchluy, “Enhancing breast tumor detection with near-field imaging,” IEEE Microw. Mag., vol. 3, pp. 48–56, 2002.
[88] E. C. Fear, P. M. Meaney, M. A. Stuchly, “Microwaves for breast cancer detection?,” IEEE Potentials, vol. 22, pp. 12–18, 2003.
[89] M. Ahadi, M. B. M. Isa, M. I. B. Saripan, W. Z. W Hasan, “Square monopole antenna for microwave imaging, design and characterization,” IET Microw. Antennas Propag., vol. 9, pp. 49-57, 2015.
[90] N. Ojaroudi, M. Ojaroudi, N. Ghadimi, “UWB omnidirectional square monopole antenna for use in circular cylindrical microwave imaging systems,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 1350-1353, 2012.
[91] A. D. Capobianco, M. S. Khan, M. Caruso, A. Bevilacqua, “3–18 GHz compact planar antenna for shortrange radar imaging,” Electron. Lett., vol. 50, pp. 1016-1018, 2014.
[92] W. Kang, S. Lee, K. A. Kim, “A ground-folded slot antenna for imaging radar applications,” IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 155-158, 2011.
[93] O. Yurduseven, V. R. Gowda, J. N. Gollub, D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wirel. Compon. Lett., vol. 26, pp. 367-369, 2016.
[94] F. Arabshahi, S. Monajemi, H. Sheikhzadeh, K. Raahemifar, R. F. Dana, “A frequency domain MVDR beamformer for UWB microwave breast cancer imaging in dispersive mediums,” IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 2014.
[95] A. Zamani, S. A. Rezaeieh; A. M. Abbosh, “Frequency domain method for early stage detection of congestive heart failure,” IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), 2015.
[96] R. K. Amineh, M. Ravan, A. Trehan, N. K. Nikolova, “Near-field microwave imaging based on aperture raster scanning with TEM horn antennas,” IEEE Trans. on Antennas and Propag., vol. 59, pp. 928-940, 2011.
[97] R. R. Haugh, “A new method for determining the quality of an egg,” U. S. Egg Poult., pp. 27-49, 1937.
[98] S. Suktanarak, S. Teerachaichayut, “Non-destructive quality assessment of hens’ eggs using hyperspectral images,” J. Food Eng., vol. 215, pp. 97-103, 2017.
[99] L. Ragni, A. Al-Shami, G. Mikhaylenko, J. Tang, “Dielectric characterization of hen eggs during storage,” J. Food Eng., vol. 82, pp. 450-459, 2007.
[100] W. Guo, S. Trabelsi, S. O. Nelson, D. R. Jones, “Storage effects on dielectric properties of eggs from 10 to 1800 MHz,” J. Food Sci., vol. 72, pp. 335-340, 2007.
[101] New Public Safety Applications and Broadband Internet Access Among Uses Envisioned by FCC Authorization of Ultra-Wideband Technology-FCC News Release, 2002.
[102] R. E. Collin, Foundations for Microwave Engineering. McGraw-Hill: New York, USA, 1992.
[103] H. W. Wu, “Label-free and antibody-free wideband microwave biosensor for identifying the cancer cells,” IEEE Trans. Microw. Theory and Techn., vol. 64, pp. 982-990, 2016.
[104] T. C. Tai, H. W. Wu, Y. H. Wang, C. T. Chiu, “Microwave characteristics of thin-film passivation on ceramic substrate by using DC reactive magnetron sputtering,” IEEE Trans. Compon. Pack. Manuf. Technol., vol. 8, pp. 1800-1806, 2018.
[105] G. G. Cheng, Y. Zhu, J. Grzesk, “Exact solutions in antenna holography using planar, spherical, or cylindrical near-field data” in Proc. AMTA., 241–245, 2012.
[106] D. M. Pozar, Microwave Engineering, Second Edition; Wiley: New Jersey, USA, 2006.
[107] D. Popovic, L. McCartney, C. Beasley, M. Lazebnik, M. Okoniweski, S. C. Hagness, J. H. Booske, “Precision open-ended coaxial probes for in Vivo and Ex vivo dielectric spectroscopy of biological tissues at microwave frequencies,” IEEE Trans. on Microw. Theory and Techn., vol. 53, pp. 1713-1722, 2005.
[108] HFSS Simulator. Ansoft, Palo Alto, CA, USA, 2011.