簡易檢索 / 詳目顯示

研究生: 陳郁方
Chen, Yu-Fang
論文名稱: 不同表現型陰道鞭毛蟲對人類子宮頸癌細胞之細胞活性作用比較
Comparative effects of Trichomonas vaginalis with distinct phenotypes on cervical cancer cells
指導教授: 鄭尉弘
Cheng, Wei-Hung
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 86
中文關鍵詞: 陰道鞭毛蟲性傳染病子宮頸癌細胞病變細胞黏附細胞激素
外文關鍵詞: Trichomonas vaginalis, Sexually transmitted disease, Cervical cancer, Cytopathic effect, Cell adhesion, Cytokine
相關次數: 點閱:7下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陰道鞭毛蟲是一種具有鞭毛的寄生性原蟲,主要侵犯生殖泌尿道鱗狀上皮細胞。全球每年約有1.56億人口被侵犯。儘管許多患者無症狀,但感染陰道鞭毛蟲可能會導致人類鞭毛蟲症、生殖泌尿道急慢性病變,甚至生殖泌尿細胞癌化。陰道鞭毛蟲臨床蟲株間,黏附能力、細胞毒性差異甚大;特別是American Type Culture Collection (ATCC) 50167,具有高黏附能力及細胞毒性。既然子宮頸上皮細胞是陰道鞭毛蟲宿主傷害的主要標的,本研究從高致病力陰道鞭毛蟲ATCC 50167著手,試圖從分析比較陰道鞭毛蟲不同分離株差異,進一步了解陰道鞭毛蟲的子宮頸上皮細胞傷害活性。實驗模式的子宮頸上皮細胞,選用癌化細胞株,人類乳突病毒核酸陽性子宮頸癌上皮細胞株HeLa。除了ATCC 50167為對照依據外,陰道鞭毛蟲另選用五株不同臨床分離株,包括ATCC 30001、ATCC 30236、ATCC 30238、ATCC 50142、ATCC 50148,藉以比較不同陰道鞭毛蟲臨床分離株的蟲體特性差異。生長曲線實驗結果發現,從培養後0小時到培養後24小時間,不同株陰道鞭毛蟲生長數量持續上升,與ATCC 50167比較,ATCC 30001、ATCC 50148生長滿度較大;ATCC 50142生長滿度較小;ATCC 30236、ATCC 30238與ATCC 50167相近;這六株陰道鞭毛蟲的生長指數中期,都是培養後約16小時。黏附是已知最主要的致病機制,而陰道鞭毛蟲彼此聚集越多,黏附能力通常也越強,因此,實驗透過觀察蟲體聚集,確立不同蟲株毒性;接種在培養盤1小時後,陰道鞭毛蟲以自由游動、獨立蟲體型態為主。實驗發現,ATCC 50167陰道鞭毛蟲本身具有較高的蟲體聚集性,聚集蟲體群落型態最為顯著。陰道鞭毛蟲在HeLa細胞黏附方面,ATCC 50167及ATCC 50142對於細胞具有較高的黏附性;ATCC 50148黏附最少。細胞剝離及漂浮是陰道鞭毛蟲共培養後最顯著的細胞病變,ATCC 50167的HeLa細胞傷害最強;ATCC 30001、ATCC 30236、ATCC 30238居中;ATCC 50142、ATCC 50148的細胞傷害最弱。陰道鞭毛蟲的細胞傷害作用與陰道鞭毛蟲黏附蛋白、細胞連接蛋白、細胞激素有關。陰道鞭毛蟲與HeLa細胞共培養後,AP33、AP65、AP120,三種陰道鞭毛蟲黏附蛋白mRNA變化方面,ATCC 30001降低AP33/AP65;ATCC 30236降低AP33,增加AP65/AP120;ATCC 30238增加AP33/AP120;ATCC 50142增加AP65/AP120;ATCC 50148降低AP65/AP120;ATCC 50167降低AP33/AP65,其它變化不顯著。ATCC 50167會降低細胞連接蛋白Connexin-43蛋白質表現量。ATCC 30001、ATCC 30236、ATCC 30238、ATCC 50142、ATCC 50148、ATCC 50167都顯著增加interleukin-6 (IL-6) mRNA表現;只觀察到ATCC 30236、ATCC 30238、ATCC 50142、ATCC 50148增加tumor necrosis factor alpha (TNF-α) mRNA表現;ATCC 50148增加intercellular adhesion molecule-1 (ICAM-1) mRNA表現。
    總合實驗結果,陰道鞭毛蟲分離株間,具有生長特性差異、聚集型態差異、細胞黏著貼附差異,陰道鞭毛蟲蟲體聚集能力,與HeLa細胞黏附能力結果一致,但在細胞傷害,只有部份蟲隻顯現對應相關性,像是ATCC 50167。但是,黏附力與黏附蛋白表現量、細胞傷害、細胞連接蛋白表現量、細胞激素表現量,卻沒有絕對一致性。結果說明,陰道鞭毛蟲黏附力,並不是細胞毒性、蟲體細胞互動作用的唯一決定性因素,陰道鞭毛蟲也有可能透過一些接觸非依賴性 (contact independent) 的方式去影響宿主細胞。本實驗觀察發現陰道鞭毛蟲特性差異,希望實驗發現能有助於陰道鞭毛蟲與子宮頸上皮細胞傷害關聯性的研究。

    Trichomonas vaginalis (T. vaginalis) is a flagellated parasitic protozoan, with an estimated 156 million people infected globally each year. Genitourinary squamous epithelial cells are the primary targets of T. vaginalis. Although many infected patients remain asymptomatic, infection of T. vaginalis is of high risk to develop clinical trichomoniasis and a range of complications, including acute and chronic genitourinary diseases and even carcinogenesis. Clinical T. vaginalis isolates have distinct adhesive and cytotoxic properties. ATCC 50167 is a strain of T. vaginalis isolate characterized by high adhesive and cytotoxic properties. Cervical epithelial cells are vulnerable to the infection of T. vaginalis. To reveal potential relationship between T. vaginalis and cervical epithelial cell injury, T. vaginalis clinical isolates were first analyzed and compared by characterizing growth curve, morphology, and cellular actions on cervical epithelial cells, compared with high pathogenic ATCC 50167. Therefore, our study is aiming to explore the biological properties of T. vaginalis clinical isolates towards cervical epithelial cell injury. Experimental cell models of cervical epithelial cells were created by using cancerous cell line: HPV-positive HeLa cells. In addition to ATCC 50167, other five clinical T. vaginalis isolates with distinct phenotypes were included to investigate and compare phenotypic variations and cellular actions on cervical epithelial cells. The used T. vaginalis isolates were ATCC 30001, ATCC 30236, ATCC 30238, ATCC 50142, and ATCC 50148. Phenotypic variations of each T. vaginalis isolate were first characterized and compared centered on growth dynamics and aggregative properties. Data of growth curve study indicated that when compared with ATCC 50167, the ATCC 30001 and ATCC 50148 had the highest growth density and the ATCC 50142 was the least. All the T. vaginalis isolates reached mid-log phase 16 hours after incubation. Adhesion is the important pathogenic determinant, and the more the parasite aggregate to one another, the more adherence. Thus, study was designed to measure aggregative property of T. vaginalis isolates for the evaluation of virulence. One hour after plating onto culture plates, most T. vaginalis were single with rounded morphology. Among the T. vaginalis isolates, aggregate morphology was apparent in ATCC 50167. In evaluating adhesive properties of T. vaginalis isolates on HeLa cells, ATCC 50142 and ATCC 50167 had the highest adhesive properties and the ATCC 50148 was the least. Cell detachment and floating were remarkable cytopathic change after T. vaginalis infection. ATCC 50167 showed the most severe cytopathic change on HeLa cells and followed by ATCC 30001/ATCC 30236/ATCC 30238 and then ATCC 50142/ATCC 50148. Adhesion proteins of T. vaginalis, cell junction proteins, and cytokines have been implicated in the cytotoxic effects of T. vaginalis. Co-culture of HeLa cells with T. vaginalis, contents of AP33, AP65, and AP120 mRNA varied. ATCC 30001 decreased AP33/AP65 expression; ATCC 30236 decreased AP33 but increased AP65/AP120 expression; ATCC 30238 increased AP33/AP120 expression; ATCC 50142 increased AP65/AP120expression; ATCC 50148 decreased AP65/AP120 expression; ATCC 50167 decreased AP33/AP65 expression. Other expressions were not significantly differed. Reduction of cell junction Connexin 43 protein was only seen in ATCC 50167. ATCC 30001, ATCC 30236, ATCC 30238, ATCC 50142, ATCC 50148, and ATCC 50167 all increased expression of IL-6 mRNA. Elevated expression of TNF-α mRNA was observed in ATCC 30236, ATCC 30238, ATCC 50142, and ATCC 50148. Only ATCC 50148 increased expression of ICAM-1 mRNA.
    In summary, T. vaginalis clinical isolates had phenotypic variations and cellular actions on cervical epithelial cells, including growth dynamics, morphology, adhesive properties, cytopathic change, T. vaginalis adhesive proteins, cellular junction proteins, and cytokine expression. The ability of T. vaginalis to aggregate was consistent with their adhesion to HeLa cells; however, regarding cytopathic effects, only some strains - such as ATCC 50167 - showed a corresponding correlation. Adhesive ability of T. vaginalis was not correlated well with adhesion protein expression, cytotoxic effects, cell junction protein expression, and cytokine expression. These results indicate that the adhesive capability of T. vaginalis is not the sole determinant of cytotoxicity or parasite-host cell interactions. T. vaginalis may also affect host cells via contact-independent mechanisms. Data of our findings suggest that T. vaginalis isolates have phenotypic variations and unique biological implications. We hope our findings of T. vaginalis phenotypic variations and cellular actions on cervical epithelial cells may provide basis to advance the study of relationship between T. vaginalis and cervical epithelial cell injury.

    考試合格證明 I 中文摘要 II 英文延伸摘要 (Extended Abstract) IV 致謝 IX 第一章 前言 (Introduction) 1 第二章 研究目的 (Research Purpose) 10 研究動機 10 實驗設計及目標 11 第三章 材料與方法 (Materials and Methods) 12 3.1 陰道鞭毛蟲特性及培養 12 3.1.1 YI-S (Yeast extract, Iron-Serum) 培養液配方 13 3.1.2 陰道鞭毛蟲解凍與冷凍保存 15 3.2 人類子宮頸癌上皮細胞特性及培養 16 3.2.1 DMEM (Dulbecco’s Modified Eagle Medium) 培養液配方 17 3.2.2 磷酸鹽緩衝生理鹽水 (Phosphate Buffered Saline,PBS) 17 3.2.3 人類子宮頸癌上皮細胞解凍與冷凍保存 17 3.3 蟲體與細胞的計算與觀察 18 3.4 陰道鞭毛蟲生長曲線 (Growth curve) 18 3.5 陰道鞭毛蟲與人類子宮頸癌上皮細胞共培養 19 3.6 細胞病變效應 (Cytopathic Effect,CPE) 測試 19 3.6.1 吉姆薩染劑 (Giemsa stain) 配製 19 3.6.2 細胞固定液配製 20 3.7 陰道鞭毛蟲染色 20 3.7.1 聚集試驗 (Aggregation test) 20 3.7.2 黏附試驗 (Adhesion test) 20 3.8 RNA 萃取 21 3.9 反轉錄聚合酶連鎖反應 (Reverse Transcriptase PCR,RT-PCR) 21 3.10 聚合酶連鎖反應 (Polymerase Chain Reaction,PCR) 22 3.11 核酸電泳分析 22 3.12 即時聚合酶連鎖反應 (Real-time Polymerase Chain Reaction,Real-time PCR) 23 3.13 蛋白質萃取 25 3.14 蛋白質定量 25 3.15 西方墨點法 (Western blotting) 25 3.16 統計方式 27 第四章 結果 (Results) 28 4.1 陰道鞭毛蟲生長特性 28 4.2 陰道鞭毛蟲黏附特性 29 4.3 陰道鞭毛蟲造成之細胞病變效應 30 4.4 陰道鞭毛蟲黏附蛋白表現變化 31 4.5 細胞連接相關蛋白表現變化 33 4.6 細胞激素表現變化 34 第五章 討論 (Discussion) 35 第六章 參考文獻 (References) 42 第七章 附圖 (Figures) 52 第八章 附表 (Tables) 71

    1. Abdel-Magied, A. A. et al., (2017). The genetic diversity of metronidazole susceptibility in Trichomonas vaginalis clinical isolates in an Egyptian population. Parasitol Res, 116(11): 3125-3130. doi: 10.1007/s00436-017-5627-3. PMID: 28956167.

    2. Adil, M. S. et al., (2021). Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers, 9(1): 1848212. doi: 10.1080/21688370.2020.1848212. PMID: 33300427; PMCID: PMC7849786.

    3. Alderete, J. F. & Garza, G. E., (1988). Identification and properties of Trichomonas vaginalis proteins involved in cytadherence. Infect Immun, 56(1): 28-33. doi: 10.1128/iai.56.1.28-33.1988. PMID: 3257206; PMCID: PMC259228.

    4. Allanson, E. R. & Schmeler, K. M., (2021). Cervical cancer prevention in low- and middle-income countries. Clin Obstet Gynecol, 64(3): 501-518. doi: 10.1097/GRF.0000000000000629. PMID: 34120126; PMCID: PMC8324570.

    5. Arroyo, R. et al., (1993). Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion synthesis follows cytoadherence. Mol Microbiol, 7(2): 299-309. doi: 10.1111/j.1365-2958.1993.tb01121.x. PMID: 8446032.

    6. Bahrami, A. et al., (2017). Clinical significance and prognosis value of Wnt signaling pathway in cervical cancer. J Cell Biochem, 118(10): 3028-3033. doi: 10.1002/jcb.25992. PMID: 28300286.

    7. Bai, L. et al., (2021). CircSND1 regulated by TNF-alpha promotes the migration and invasion of cervical cancer cells. Cancer Manag Res, 13: 259-275. doi: 10.2147/CMAR.S289032. PMID: 33469369.

    8. Bai, W. et al., (2023). Receptor-interacting protein kinase 1 (RIPK1) regulates cervical cancer cells via NF-kappaB-TNF-alpha pathway: An in vitro study. Transl Oncol, 36: 101748. doi: 10.1016/j.tranon.2023.101748. PMID: 37516007.

    9. Bastida-Corcuera, F. D. et al., (2005). Trichomonas vaginalis lipophosphoglycan mutants have reduced adherence and cytotoxicity to human ectocervical cells. Eukaryot Cell, 4(11): 1951-8. doi: 10.1128/EC.4.11.1951-1958.2005. PMID: 16278462. PMCID: PMC1287856.

    10. Belfort, I. K. P. et al., (2021). Trichomonas vaginalis as a risk factor for human papillomavirus: a study with women undergoing cervical cancer screening in a northeast region of Brazil. BMC Womens Health, 21(1): 174. doi: 10.1186/s12905-021-01320-6. PMID: 33892709; PMCID: PMC8066958.

    11. Bongiorni Galego, G. & Tasca, T., (2023). Infinity war: Trichomonas vaginalis and interactions with host immune response. Microb Cell, 10(5): 103-116. doi: 10.15698/mic2023.05.796. PMID: 37125086; PMCID: PMC10140678.

    12. Bouchemal, K. et al., (2017). Strategies for Prevention and Treatment of Trichomonas vaginalis Infections. Clin Microbiol Rev, 30(3): 811-825. doi: 10.1128/CMR.00109-16. PMID: 28539504; PMCID: PMC5475227.

    13. Burd, E. M., (2003). Human papillomavirus and cervical cancer. Clin Microbiol Rev, 16(1): 1-17. doi: 10.1128/CMR.16.1.1-17.2003. PMID: 12525422; PMCID: PMC145302.

    14. Burgos, V. et al., (2020). Drimenol, isodrimeninol and polygodial isolated from Drimys winteri reduce monocyte adhesion to stimulated human endothelial cells. Food Chem Toxicol, 146: 111775. doi: 10.1016/j.fct.2020.111775. Epub 2020 Sep 26. PMID: 32987110.

    15. Cai, C. et al., (2022). Serum IL-6 Level Predicts the Prognosis and Diagnosis in Cervical Cancer Patients. Int J Womens Health, 14: 655-663. doi: 10.2147/IJWH.S347740. PMID: 35547839; PMCID: PMC9081182.

    16. Chang, J. H. et al., (2006). Dependence on p38 MAPK signalling in the up-regulation of TLR2, TLR4 and TLR9 gene expression in Trichomonas vaginalis-treated HeLa cells. Immunology, 118(2): 164-70. doi: 10.1111/j.1365-2567.2006.02347.x. PMID: 16771851; PMCID: PMC1782292.

    17. Cheng, W. H. et al., (2015). Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion. Parasit Vectors, 8: 393. doi: 10.1186/s13071-015-1000-5. PMID: 26205151; PMCID: PMC4513698.

    18. Cudmore, S. L. et al., (2004). Treatment of infections caused by metronidazole-resistant Trichomonas vaginalis. Clin Microbiol Rev, 17(4): 783-93, table of contents. doi: 10.1128/CMR.17.4.783-793.2004. PMID: 15489348; PMCID: PMC523556.

    19. Cunniffe, C. et al., (2012). Expression of tight and adherens junction proteins in cervical neoplasia. Br J Biomed Sci, 69(4): 147-53. PMID: 23304789.

    20. da Costa, R. F. et al., (2005). Trichomonas vaginalis perturbs the junctional complex in epithelial cells. Cell Res, 15(9): 704-16. doi: 10.1038/sj.cr.7290340. PMID: 16212877.

    21. Despommier, D. D. et al., (1995). Trichomonas vaginalis (Donne 1836). In: Parasitic Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2476-1_23

    22. Dias-Lopes, G. et al., (2017). Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells. Mem Inst Oswaldo Cruz, 112(10): 664-673. doi: 10.1590/0074-02760170032. PMID: 28953.

    23. Dong, D. et al., (2020). Alteration of cell junctions during viral infection. Thorac Cancer, 11(3): 519-525. doi: 10.1111/1759-7714.13344. PMID: 32017415; PMCID: PMC7049484.

    24. Doorbar, J. et al., (2012). The biology and life-cycle of human papillomaviruses. Vaccine, 30 Suppl 5: F55-70. doi: 10.1016/j.vaccine.2012.06.083. PMID: 23199966.

    25. Edwards, D. I. & Mathison, G. E., (1970). The mode of action of metronidazole against Trichomonas vaginalis. J Gen Microbiol, 63(3): 297-302. doi: 10.1099/00221287-63-3-297. PMID: 5534571.

    26. Edwards, T. et al., (2016). Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Crit Rev Microbiol, 42(3): 406-17. doi:10.3109/1040841X.2014.958050. PMID: 25383648.

    27. Fazlollahpour-Naghibi, A. et al., (2023). Trichomonas vaginalis infection and risk of cervical neoplasia: A systematic review and meta-analysis. PLoS One, 18(7): e0288443. doi: 10.1371/journal.pone.0288443. PMID: 37437068; PMCID: PMC10337954.

    28. Ferrall, L. et al., (2021). Cervical Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res, 27(18): 4953-4973. doi: 10.1158/1078-0432.CCR-20-2833. PMID: 33888488; PMCID: PMC8448896.

    29. Fernandes, A. et al., (2022). Human papillomavirus-independent cervical cancer. Int J Gynecol Cancer, 32(1): 1-7. doi: 10.1136/ijgc-2021-003014. PMID: 34725203.

    30. Fichorova, R. et al., (2017). Trichomonas vaginalis infection in symbiosis with Trichomonasvirus and Mycoplasma. Res Microbiol, 168(9-10): 882-891. doi: 10.1016/j.resmic.2017.03.005. PMID: 28366838; PMCID: PMC8130574.

    31. Garber, G. E. et al., (1989). Isolation of a cell-detaching factor of Trichomonas vaginalis. J Clin Microbiol, 27(7): 1548-53. doi: 10.1128/jcm.27.7.1548-1553.1989. PMID: 2788661; PMCID: PMC267613.

    32. Grm, H.S. et al., (2009). Human papillomavirus infection, cancer & therapy. Indian J Med Res, 130(3): 277-85. PMID: 19901437.

    33. Guo, H. et al., (2018). Association between expression of MMP-7 and MMP-9 and pelvic lymph node and para-aortic lymph node metastasis in early cervical cancer. J Obstet Gynaecol Res, 44(7): 1274-1283. doi: 10.1111/jog.13659. PMID: 29767419.

    34. Harp, D. F. & Chowdhury, I., (2011). Trichomoniasis: evaluation to execution. Eur J Obstet Gynecol Reprod Biol, 157(1): 3-9. doi: 10.1016/j.ejogrb.2011.02.024. PMID: 21440359; PMCID: PMC4888369.

    35. Hedl, M. & Abraham, C., (2011). Distinct roles for Nod2 protein and autocrine interleukin-1beta in muramyl dipeptide-induced mitogen-activated protein kinase activation and cytokine secretion in human macrophages. J Biol Chem, 286(30): 26440-9. doi: 10.1074/jbc.M111.237495. Epub 2011 Jun 9. PMID: 21659536; PMCID: PMC3143608.

    36. Heine, P. & McGregor, J. A., (1993). Trichomonas vaginalis: a reemerging pathogen. Clin Obstet Gynecol, 36(1): 137-44. doi: 10.1097/00003081-199303000-00019. PMID: 8435938.

    37. Heuser, S. et al., (2016). The levels of epithelial anchor proteins β-catenin and zona occludens-1 are altered by E7 of human papillomaviruses 5 and 8. J Gen Virol, 97(2): 463-472. doi: 10.1099/jgv.0.000363. PMID: 26645068.

    38. Hinderfeld, A. S. et al., (2019). Cooperative interactions between Trichomonas vaginalis and associated bacteria enhance paracellular permeability of the cervicovaginal epithelium by dysregulating tight junctions. Infect Immun, 87(5): e00141-19. doi: 10.1128/IAI.00141-19. PMID: 30858343. PMCID: PMC6479042.

    39. Jia, L. et al., (2018). IL-8 is upregulated in cervical cancer tissues and is associated with the proliferation and migration of HeLa cervical cancer cells. Oncol Lett, 15(1): 1350-1356. doi: 10.3892/ol.2017.7391. PMID: 29399185.

    40. Jones, M. R. et al., (2009). Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol, 11(9): 1157-63. doi: 10.1038/ncb1931. Epub 2009 Aug 23. PMID: 19701194; PMCID: PMC2759306.

    41. Lazarczyk, M. et al., (2009). The EVER proteins as a natural barrier against papillomaviruses: a new insight into the pathogenesis of human papillomavirus infections. Microbiol Mol Biol Rev, 73(2): 348-70. doi: 10.1128/MMBR.00033-08. PMID: 19487731; PMCID: PMC2698414.

    42. Lazenby, G. B. et al., (2014). An association between Trichomonas vaginalis and high-risk human papillomavirus in rural Tanzanian women undergoing cervical cancer screening. Clin Ther, 36(1): 38-45. doi: 10.1016/j.clinthera.2013.11.009. PMID: 24417784.

    43. Li, M. et al., (2021). Exposure to microbial metabolite butyrate prolongs the survival time and changes the growth pattern of human papillomavirus 16 E6/E7-immortalized keratinocytes in vivo. Am J Pathol, 191(10): 1822-1836. doi: 10.1016/j.ajpath.2021.06.005. PMID: 34214507; PMCID: PMC8579241.

    44. Lin, M. C. et al., (2012). The antimicrobial peptide, shrimp anti-lipopolysaccharide factor (SALF), inhibits proinflammatory cytokine expressions through the MAPK and NF-kappaB pathways in Trichomonas vaginalis adherent to HeLa cells. Peptides, 38(2): 197-207. doi: 10.1016/j.peptides.2012.10.003. PMID: 23088922.

    45. Malaguarnera, L. et al., (2006). Chitotriosidase gene expression in Kupffer cells from patients with non-alcoholic fatty liver disease. Gut, 55(9): 1313-20. doi: 10.1136/gut.2005.075697. Epub 2006 Jul 6. PMID: 16825325; PMCID: PMC1860024.

    46. Mariani, L. et al., (2017). Overview of the benefits and potential issues of the nonavalent HPV vaccine. Int J Gynaecol Obstet, 136(3): 258-265. doi: 10.1002/ijgo.12075. PMID: 28087890.

    47. Mei, X. et al., (2023). Association between the infections of Trichomonas vaginalis and uterine cervical human papillomavirus: a meta-analysis. J Obstet Gynaecol, 43(1): 2194986. doi: 10.1080/01443615.2023.2194986. PMID: 37029648.

    48. Mei, Xuefang. et al., (2024). TvAP65 in Trichomonas vaginalis promotes HPV infection by interacting with host molecules. bioRxiv, 09.27.615334. 10.1101/2024.09.27.615334.

    49. Mercer, F. & Johnson, P. J., (2018). Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses. Trends Parasitol, 34(8): 683-693. doi: 10.1016/j.pt.2018.05.006. PMID: 30056833; PMCID: PMC11132421.

    50. Mielczarek, E. & Blaszkowska, J., (2016). Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure. Infection, 44(4): 447-58. doi: 10.1007/s15010-015-0860-0. PMID: 26546373.

    51. Mohammadi Esfanjani, S. et al., (2023). Induction of TLR5, IRAK1, and NF-kappaB expression byTrichomonasvaginalisin cervical cancer cell (HeLa) and normal human vaginal epithelial cell (HVECs) lines. J Infect Dev Ctries, 17(8):1160-1167. doi: 10.3855/jidc.18066.PMID:37699101.

    52. Mohammadi Esfanjani, S. et al., (2023). Induction of TLR5, IRAK1, and NF-κB expression by Trichomonas vaginalis in cervical cancer cell (HeLa) and normal human vaginal epithelial cell (HVECs) lines. J Infect Dev Ctries, 17(8):1 160-1167. doi: 10.3855/jidc.18066. PMID: 37699101.

    53. Molina, M. A. et al., (2022). In-depth insights into cervicovaginal microbial communities and hrHPV infections using high-resolution microbiome profiling. NPJ Biofilms Microbiomes, 8(1): 75. doi: 10.1038/s41522-022-00336-6. PMID: 36171433; PMCID: PMC9519886.

    54. Ngobese, B. et al., (2022). Detection of metronidazole resistance in Trichomonas vaginalis using uncultured vaginal swabs. Parasitol Res, 121(8): 2421-2432. doi: 10.1007/s00436-022-07548-x. Epub 2022 Jun 3. PMID: 35657426.

    55. Okunade, K. S., (2020). Human papillomavirus and cervical cancer. J Obstet Gynaecol, 40(5): 602-608. doi: 10.1080/01443615.2019.1634030. PMID: 31500479; PMCID: PMC7062568.

    56. Otani, S. et al., (2019). Cytokine expression profiles in cervical mucus from patients with cervical cancer and its precursor lesions. Cytokine, 120: 210-219. doi: 10.1016/j.cyto.2019.05.011. PMID: 31121496.

    57. Pachano, T. et al., (2017). Epigenetics regulates transcription and pathogenesis in the parasite Trichomonas vaginalis. Cell Microbiol, 19(6). doi: 10.1111/cmi.12716. Epub 2017 Jan 22. PMID: 28054438.

    58. Peterson, K. & Drame, D., (2010). Iatrogenic transmission of Trichomonas vaginalis by a traditional healer. Sex Transm Infect, 86(5): 353-4. doi: 10.1136/sti.2010.043125. PMID: 20876753.

    59. Petrin, D. et al., (1998). Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev, 11(2): 300-17. doi: 10.1128/CMR.11.2.300. PMID: 9564565; PMCID: PMC106834.

    60. Ramos Valerio, Y. A. et al., (2023). The oral microbiome and short chain fatty acids as contributors to oral HPV disparities in Puerto Rican people with HIV [Abstract]. Cancer Epidemiology, Biomarkers & Prevention, 32(12_Supplement), Abstract nr C135. https://doi.org/10.1158/1538-7755.DISP23-C135.

    61. Ravel, J. et al., (2011). Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A, 108 Suppl 1(Suppl 1): 4680-7. doi: 10.1073/pnas.1002611107. PMID: 20534435; PMCID: PMC3063603.

    62. Reza, S. et al., (2024). Public health concern-driven insights and response of low- and middle-income nations to the World health Organization call for cervical cancer risk eradication. Gyneco lOncol Rep, 54: 101460. doi: 10.1016/j.gore.2024.101460. PMID: 39114805; PMCID: PMC11305207.

    63. Ryu, J. S. & Min, D. Y., (2006). Trichomonas vaginalis and trichomoniasis in the Republic of Korea. Korean J Parasitol, 44(2): 101-16. doi: 10.3347/kjp.2006.44.2.101. PMID: 16809958; PMCID: PMC2532633.

    64. Saito-Nakano, Y. et al., (2023). Prevalence and metronidazole resistance of Trichomonas vaginalis among Japanese women in 2021. IJID Reg, 7: 130-135. doi: 10.1016/j.ijregi.2023.02.007. PMID: 37025347; PMCID: PMC10070129.

    65. Salas, N. et al., (2023). Role of cytoneme structures and extracellular vesicles in Trichomonas vaginalis parasite-parasite communication. Elife. 12: e86067. doi: 10.7554/eLife.86067. PMID: 37129369. PMCID: PMC10270686.

    66. Schmitt-Graeff, A. et al., (2007). The Ki67+ proliferation index correlates with increased cellular retinol-binding protein-1 and the coordinated loss of plakophilin-1 and desmoplakin during progression of cervical squamous lesions. Histopathology, 51(1): 87-97. doi: 10.1111/j.1365-2559.2007.02724.x. PMID: 17593084.

    67. Schwebke, J. R. & Barrientes, F. J., (2006). Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother, 50(12): 4209-10. doi: 10.1128/AAC.00814-06. PMID: 17000740; PMCID: PMC1693974.

    68. Schwebke, J. R. & Burgess, D., (2004). Trichomoniasis. ClinMicrobiol Rev, 17(4): 794-803, table of contents. doi: 10.1128/CMR.17.4.794-803.2004. PMID: 15489349; PMCID: PMC523559.

    69. Song, L. et al., (2024). Clinical changes in serum intercellular adhesion molecule 1 in cervical cancer patients receiving radiotherapy. Jpn J Radiol, 42(12): 1493-1500. doi: 10.1007/s11604-024-01628-x. PMID: 39073520.

    70. Sorvillo, F. et al., (2001). Trichomonas vaginalis, HIV, and African-Americans. Emerg Infect Dis, 7(6): 927-32. doi: 10.3201/eid0706.010603. PMID: 11747718; PMCID: PMC2631893.

    71. Steinhoff, I. et al., (2006). Phosphorylation of the gap junction protein Connexin43 in CIN III lesions and cervical carcinomas. Cancer Lett, 235(2): 291-297. doi: 10.1016/j.canlet.2005.04.031. PMID: 15958277.

    72. Sun, L. et al., (2014). Cyclin E-CDK2 protein phosphorylates plant homeodomain finger protein 8 (PHF8) and regulates its function in the cell cycle. J Biol Chem, 290(7): 4075-85. doi: 10.1074/jbc.M114.602532. Epub 2014 Dec 29. PMID: 25548279; PMCID: PMC4326817.

    73. Tomaić, V., (2016). Functional roles of E6 and E7 oncoproteins in HPV-induced malignancies at diverse anatomical sites. Cancers (Basel), 8(10): 95. doi: 10.3390/cancers8100095. PMID: 27775564; PMCID: PMC5082385.

    74. Tsang, S. H. et al., (2019). Association between Trichomonas vaginalis and prostate cancer mortality. Int J Cancer, 144(10): 2377-2380. doi: 10.1002/ijc.31885. PMID:30242839.

    75. Twu, O. et al., (2013). Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host∶ parasite interactions. PLoS Pathog, 9(7): e1003482. doi: 10.1371/journal.ppat.1003482. PMID: 23853596; PMCID: PMC3708881.

    76. Vazquez-Carrillo, L. I. et al., (2011). The effect of Zn2+ on prostatic cell cytotoxicity caused by Trichomonas vaginalis. Journal of Integrated OMICS, 1(2), 1-8.

    77. Wang, Z. et al., (2024). Long-read sequencing reveals the structural complexity of genomic integration of HPV DNA in cervical cancer cell lines. BMC Genomics, 25(1): 198. doi: 10.1186/s12864-024-10101-y. PMID: 38378450; PMCID: PMC10877919.

    78. Williamson, A. L., (2023). Recent developments in human papillomavirus (HPV) vaccinology. Viruses, 15(7): 1440. doi: 10.3390/v15071440. PMID: 37515128; PMCID: PMC10384715.

    79. Wise-Draper, T. M. & Wells, S. I., (2008). Papillomavirus E6 and E7 proteins and their cellular targets. Front Biosci, 13: 1003-17. doi: 10.2741/2739. PMID: 17981607.

    80. Xuefang, Mei. et al., (2024). TvAP65 in Trichomonas vaginalis Promotes HPV Infection by Interacting with Host Molecules. bioRxiv, 615334; doi: https://doi.org/10.1101/2024.09.27.615334.

    81. Yang, M. et al., (2020). Co-infection with trichomonas vaginalis increases the risk of cervical intraepithelial neoplasia grade 2-3 among HPV16 positive female: a large population-based study. BMC Infect Dis, 20(1): 642. doi: 10.1186/s12879-020-05349-0. PMID: 32873233; PMCID: PMC7466445.

    82. Yang, S. et al., (2018). Trichomonas vaginalis infection-associated risk of cervical cancer: A meta-analysis. Eur J Obstet Gynecol Reprod Biol, 228: 166-173. doi: 10.1016/j.ejogrb.2018.06.031. PMID:29980111.

    83. Zhang, Z. et al., (2020). The molecular characterization and immunity identification of Trichomonas vaginalis adhesion protein 33 (AP33). Front Microbiol, 11: 1433. doi: 10.3389/fmicb.2020.01433. PMID: 32695085; PMCID: PMC7338309.

    84. Zhang, Z. et al., (2021). The molecular characterization and immune protection of adhesion protein 65 (AP65) of Trichomonas vaginalis. Microb Pathog, 152: 104750. doi: 10.1016/j.micpath.2021.104750. PMID: 33484808.

    85. Zhang, Z. et al., (2023).The correlation between Trichomonas vaginalis infection and reproductive systemcancer: a systematic review and meta-analysis. Infect Agent Cancer, 18(1): 15. doi: 10.1186/s13027-023-00490-2.PMID:36864428.

    86. Zhang, Z. et al., (2023). The interaction between adhesion protein 33 (TvAP33) and BNIP3 mediates the adhesion and pathogenicity of Trichomonas vaginalis to host cells. Parasit Vectors, 16(1): 210. doi: 10.1186/s13071-023-05798-x.PMID: 37344876.

    87. Zhang, Z. et al., (2023). Trichomonas vaginalis adhesion protein 65 (TvAP65) modulates parasite pathogenicity by interacting with host cell proteins. Acta Trop, 246: 106996. doi: 10.1016/j.actatropica.2023.106996. PMID: 37536435.

    88. Zhu, Z. et al., (2018). Trichomonas vaginalis inhibits HeLa cell growth through modulation of critical molecules for cell proliferation and apoptosis. Anticancer Res, 38(9): 5079-5086. doi: 10.21873/anticanres.12827. PMID: 30194152.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE