| 研究生: |
李南瑋 Lee, Nan-wei |
|---|---|
| 論文名稱: |
生醫鈦合金之動態剪切變形與破壞行為分析 High Strain Rate Shear Deformation and Fracture Behaviour of Biomedical Titanium Alloy |
| 指導教授: |
李偉賢
Lee, Woei-shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 霍普金森桿 、生醫鈦合金 、絕熱剪切帶 |
| 外文關鍵詞: | Ti-15Mo-5Zr-3Al, adiabatic shear band |
| 相關次數: | 點閱:95 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究主要是討論Ti-15Mo-5Zr-3Al合金受到動態剪切荷載下之塑性變形行為,內容分為兩部分:(1)利用霍普金森扭轉試驗機,來探討Ti-15Mo-5Zr-3Al合金在高速動態剪切荷載下之塑性變形行為。其測試條件為環境溫度-150℃、25℃與300℃,剪應變速率為1200 s-1、2000 s-1與2800 s-1等三組不同的扭轉荷載速度;(2)利用霍普金森壓縮試驗機配合帽型試件,來探討Ti-15Mo-5Zr-3Al合金在極高速動態剪切荷載下之塑性變形行為。其測試條件為環境溫度25℃,剪應變速率為5×104 s-1、7×104 s-1與1×105 s-1等三組不同的壓縮荷載速度。分別討論上述兩部分實驗在動態荷載下的塑變行為與破壞特性分析,並探討兩者之相關性,同時引用一構成方程式來描述Ti-15Mo-5Zr-3Al合金在高速剪切荷載下之塑變行為,以做為工程設計與模擬分析之用。
在高速扭轉實驗方面,由實驗結果的數據分析中可以知道Ti-15Mo-5Zr-3Al合金機械性質受剪應變速率、溫度及剪應變量之影響甚鉅,在固定溫度條件下,其塑流剪應力值、破壞剪應變量、加工硬化率、降伏剪強度、加工硬化係數、應變速率敏感性係數、溫度敏感性係數與微硬度皆會隨著剪應變速率的提升而增加,而活化能則隨應變速率增加而減少;另外,在固定剪應變速率條件下,其塑流剪應力值、加工硬化率、降伏剪強度、加工硬化係數、應變速率敏感性係數、溫度敏感性係數與微硬度皆會隨著環境溫度的提高而下降,而破壞剪應變量與活化能則隨著溫度的提高而增加。除了數據分析之外,吾人利用掃描式電子顯微鏡(SEM)與光學顯微鏡(OM)來分別觀察破懷形貌與破壞區域之金相組織,其韌窩形貌隨應變速率與溫度的提高,有越來越密且深的趨勢;而破斷區域之金相組織隨溫度與應變速率的增加,其剪切帶區域之晶粒扭轉角與局部應變量皆增加。最後,藉由Kobayashi & Dodd模式之構成方程式能準確地描述Ti-15Mo-5Zr-3Al合金在不同溫度下的高速剪切塑變行為。
在極高速剪切荷載實驗方面,由實驗結果的數據分析中可以知道Ti-15Mo-5Zr-3Al合金部份的機械性質與扭轉試驗中的趨勢相同,但由於熱軟化之因素,部分機械性質需分為熱軟化前與熱軟化後來討論。應變速率敏感性係數在熱軟化前隨應變量的增加而上升,熱軟化後隨應變量的增加而下降,熱活化體積的變化趨勢則與應變速率敏感性係數相反。
A split-Hopkinson torsional bar system is employed to conduct a comprehensive investigation into the dynamic shear deformation behaviour and fracture characteristics of Ti-15Mo-5Zr-3Al alloy. The investigations commence by examining the mechanical response of the alloy under shear strain rates of 1200 s-1, 2000 s-1 and 2800 s-1, respectively, at temperatures of -150℃, 25℃ and 300℃. The deformation behaviour of the Ti-15Mo-5Zr-3Al alloy is then examined by performing compressive tests using hat-shaped specimens under very high strain rates of 5×104 s-1, 7×104 s-1 and 1×105 s-1, respectively, at a constant temperature of 25℃.
The experimental results indicate that the shear strain, shear strain rate and temperature all have a significant influence on the mechanical properties of Ti-15Mo-5Zr-3Al alloy. For a constant temperature, the flow shear stress, fracture shear strain, work hardening rate, yielding shear strength, work hardening coefficient, strain rate sensitivity, temperature sensitivity and micro-hardness all increase with increasing strain rate, while the activation energy decreases. Conversely, for a constant strain rate, the flow shear stress, work hardening rate, yielding shear strength, work hardening coefficient, strain rate sensitivity, temperature sensitivity and micro-hardness all decrease with increasing temperature, while the fracture shear strain and activation energy increase. The fracture surfaces are characterized by a dimple-like structure, which is indicative of a ductile failure mode. The appearance and density of these dimples are strongly related to the applied strain rate and temperature conditions. Optical microscopy observations reveal that the fracture surfaces are twisted into band-like features as a result of severe localized shear deformation. The width of these shear bands is determined by the strain rate and temperature applied during the deformation process. It is found that the high strain rate shear plastic behaviour of Ti-15Mo-5Zr-3Al alloy can be accurately predicted using the Kobayashi and Dodd constitutive equation.
In the compressive tests performed at extremely high strain rates using hat-shape specimens, the experimental results indicate that the tendencies of the rising temperature of the Ti-15Mo-5Zr-3Al alloy are broadly similar to those observed under lower strain rate conditions. However, due to softening effects, strain rate sensitivity and activation volume exhibit different characteristics before and after the point of thermal instability. For example, the strain rate sensitivity increases with increasing shear strain before the occurrence of thermal instability, but decreases with increasing shear strain thereafter. By contrast, the activation volume decreases with increasing shear strain prior to the onset of thermal instability, but then increases with increasing shear strain thereafter.
[1] Q. Li, "New Type of Titanium Alloys for Man-Made Thigh Joint," 上海鋼研, No. 1, pp. 16-21, 2002.
[2] S. R. YU, "The Research Present Status and Tendency of Biomedical Titanium Alloys," Mater. Sci. Eng., Vol. 18, No. 2, pp. 131-134, 2000.
[3] H. M. Kim, H. Takadama, T. Kokubo, S. Nishiguchi, T. Nakamura, "Formation of a bioactive graded surface structure on Ti-15Mo-5Zr-3Al alloy by chemical treatment," Biomaterials, 21, pp. 353-358, 2000.
[4] Y. Okazaki, Y. Ito, K. Kyo and T. Tateishi, "Corrosion Resistance and Corrosion Fatigue Strength of New Titanium Alloys for Medical Implants without V and Al," Mater. Sci. Eng. A, Vol. 213, pp. 138-147, 1996.
[5] Y. Okazaki, "Effect of Friction on Anodic Polarization Properties of Metallic Biomaterials," Biomaterials, No.23, pp. 2071-2077, 2002.
[6] K. Tokaji, H. Shiota, J. C. Bian, "Fatigue crack propagation in β Ti-15Mo-5Zr-3Al alloy," Mater. Sci. Eng. A, Vol. 243, pp. 155-162, 1998.
[7] K. Tokaji, J. C. Bian, T. Ogawa, M. Nakajima, "The microstructure dependence of fatigue behaviour in Ti-15Mo-5Zr-3Al alloy," Mater. Sci. Eng. A, Vol. 213, pp. 86-92, 1996.
[8] 黃信華, "生醫鈦合金在不同溫度及應變速率下之機械與微觀特性反應," 國立成功大學機械工程研究所碩士論文, 2006
[9] H. Kolsky, "An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading," Proceedings of the Physical Society, Vol. 62, pp. 676-699, 1949.
[10] B. M. Butcher and C. H. Karnes, "Strain Rate Effects in Metals," J. Appl. Phys., Vol. 37, pp. 402-411, 1964.
[11] F. E. Hauser, "Techniques for Measuring Stress-Strain Relations at High Strain Rates," Exp. Mech., Vol. 6, pp. 395-402, 1966.
[12] Y. Leroy and M. Ortiz, In Mechanical Properties of Materials at High Rates of Strain, (ed. J. Harding), pp. 257-265, 1989.
[13] D. J. Steinberg, S. G. Cochran and N. W. Guinan, "A Constitutive Model for Metals Applicable at High Strain Rate," J. Appl. Phys., Vol. 51, No. 3, pp. 1498-1504, 1980.
[14] Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 80-91, 1992.
[15] Jonathan Black,“The education of the biomaterialist: Report of a survey, pp. 1980-81,” Education of the Biomaterialist, 1981.
[16] K. H. Rateitschak and H. F. Wolf, Color atlas of dental medicine, Thieme Medical Publishers, pp. 11-24, 1995.
[17] M. S. Block, J. N. Kent, and L. S. Guerra, Implants in dentistry, W. B. Saunders Company. : pp. 45-62,1997.
[18] J. B. Park, Biomaterials: An Introduction, Plenum Press, New York. : pp. 1-4, 1979.
[19] K. P. Andriano, Y. Tabata, Y. Ikada, J. Heller, “In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering,” J Biomed Mater Res (Appl Biomater) 48, pp. 602-612, 1999.
[20] T. Yamamuro, T. Nakamura, H. Iida, K. Kawanabe, Y. Matsuda, K. Ido, J. Tamura and Y. Senaha, “Development of bioactive bone cement and its clinical applications,” Biomaterials, Volume 19, Issue 16, August 1998, pp. 1479-1482.
[21] R. W. Revie and N. D. Greene, “Corrosion behaviour of surgical implant materials: I. effects of sterilization,” Corrosion Science, Volume 9, Issue 10, 1969, pp. 755-762.
[22] R. W. Revie and N. D. Greene, “Corrosion behaviour of surgical implant materials: II. Effects of surface preparation,” Corrosion Science, Volume 9, Issue 10, 1969, pp. 763-770.
[23] R. W. Revie, N. D. Greene, “Comparison of the in vivo and in vitro corrosion of 18-8 stainless steel and titanium,” J. Biomed. Mater. Res. Vol.3, 1969, pp. 465-470.
[24] S. Morais, J. P. Sousa, M. H. Fernandes, G. S. Carvalho, J. D. de Bruijn and C. A. van Blitterswijk, “Effects of AISI 316L corrosion products in in vitro bone formation,” Biomaterials, Volume 19, Issues 11-12, June 1998, pp. 999-1007.
[25] P. R. Bouchard, B. Jonathan, B. A. Albrecht, R. E. Kaderly, J. O. Galante, and B. U. Pauli, “Carcinogenicity of CoCrMo(F-75) implants in the rat,” J. Biomed. Mater. Res., 32, pp. 37-44, 1996.
[26] C. B. Johansson, A. Wennerberg and T. Albrektsson, “Quantitative comparison of screw-shaped commercially pure titanium and zirconium implants in rabbit tibia,” Journal of materials science: Materials in Medicine, Vol. 5, 1994, pp. 340-344.
[27] H. S. Dobbs and J. T. Scales, "Behavior of Commercially Pure Titanium and Ti-318 (Ti-6Al-4V) in Orthopedic Implants," ASTM, Philadelphia, pp. 173-186, 1983.
[28] S. G. Steinemann, "Titanium Alloys as Metallic Biomaterials," Ti Sci. Tech., Vol. 2, pp. 1327-1334, 1984.
[29] P. Slanina, W. Frch, A. Bernhardson, A. Cedergreen and P. Mattsson, "Influence of Dietary Factors on Aluminium Absorption and Retention in Brain and Bone of Rat," Acta Pharmocal. Toxicol., Vol. 56, pp. 331-336, 1985.
[30] G. B. van der Voet, E. Marani, S. Tio and F. A. de Wolff, "Aluminium Neurotoxicity," Histo and Cyto-Chemistry as a Tool in Environ. Toxicol. , Stuttgart, Germany, pp. 235-242, 1991.
[31] K. Zweymuller, F. Lintner and M. F. Semlitsch, “Biologic Fixation of a Press-Fit Titanium Hip Joint Endoprosthesis,” Clinical Orthopaedics & Related Research. 235, pp. 195-206, October 1988.
[32] K. G. Nichols and D. A. Puleo, "Effect of Metal Ions on the Formation and Function of Osteoclastic Cells in Vivo," J. Biomed. Mater. Res., Vol. 35, pp. 256-271, 1997.
[33] M. G. Shettlemore and K. J. Bundy, "Toxicity Measurement of Orthopedic Implant Alloy Degradation Products Using a Bioluminescent Bacterial Assay," J. Biomed. Mater. Res., Vol. 45, pp. 396-403, 1999.
[34] R. T. Bothe, L. E. Beaton and H. A. Davenport, “Reaction of bone to multiple metallic implants,” Gynecol Obstet, 1940, Vol. 71, pp. 598-602.
[35] K. Tokaji, J. C. Bian, T. Ogawa and M. Nakajima, "The Microstructure Dependence of Fatigue Behaviour in Ti-15Mo-5Zr-3Al Alloy," Mater. Sci. Eng. A, Vol. 213, pp. 86-92, 1996.
[36] M. Ikeda, S. Y. Komatsu, T. Sugimoto and M. Hasegawa, "Effect of Two Phase Warm Rolling on Aging Behavior and Mechanical Properties of Ti-15Mo-5Zr-3Al Alloy," Mater. Sci. Eng. A, Vol. 243, pp. 140-145, 1998.
[37] K. Machara, K. Doi, T. Matsushita and Y. Sasaki, "Application of Vanadium-Free Titanium Alloys to Artificial Hip Joints," Mater. Trans., Vol. 43, No. 12, pp. 2936-2942, 2002.
[38] R. Boyer, G. Welsch and E. W. Collings. "Materials Properties Handbook: Titanium Alloys," Materials Park, OH; ASM International, 1994.
[39] S. Ankem and C. A. Greene, “Recent developments in microstructure/property relationships of beta titanium alloys,” Materials Science and Engineering A, Volume 263, Issue 2, 15 May 1999, pp. 127-131.
[40] S. K. Jha and K. S. Ravichandran, “High-Cycle Fatigue Resistance in Beta-Titanium Alloys,” JOM (USA). Vol. 52, no. 3, pp. 30-35. Mar. 2000.
[41] 賴耿陽, 金屬鈦理論與應用, 復漢出版社, pp. 52, 1980.
[42] Y. Okazaki, K. Kyo, Y. Ito and T. Tateishi, “Effects of Mo and Pd on corrosion resistance of V-free titanium alloys for medical implants,” Materials Transactions, JIM (Japan). Vol. 38, no. 4, pp. 344-352. Apr. 1997.
[43] K. K. Wang, L. J. Gustavson and J. H. Dumbleton, “Microstructure and properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe, developed for surgical implants,” ASTM Special Technical Publication, n 1272, May, 1996, pp. 76-86.
[44] T. Nishimura, M. Nishigaki and Y. Moriguchi, "Characteristics of Beta Titanium Alloy Ti-15Mo-5Zr-3Al," 神戶製鋼技報, Vol. 32, No.1, pp. 52-55.
[45] S. Komatsu, M. Ikeda, T. Sugimoto, K. Kamei, O. Maesaki and M. Kojima, "Aging behaviour of Ti-15Mo-5Zr and Ti-15Mo-5Zr-3Al alloy up to 573K," Mater. Sci. Eng. A, 213, pp. 61-65, 1996.
[46] M. Ikeda, S. Komatsu, T. Sugimoto and M. Hasegawa, "Effect of two phase warm rolling on aging behavior and mechanical properties of Ti-15Mo-5Zr-3Al alloy," Mater. Sci. Eng. A, 243, pp. 140-145, 1998.
[47] M. A. Meyers and L. E. Murr, Shock Waves and High-Strain-Rate Phenomena in Metals, Plenum Press, pp. 129-167, 1981.
[48] ASM Handbook Committee, Metals Handbook, American Society for Metals, pp. 215-230, 1978.
[49] U. S. Lindholm and L. W. Yeakly, “High Strain Rate Testing: Tension and Compression,” Experimental Mechanics, Vol. 3 , pp. 81-88, 1983.
[50] M. A. Meyers, Dynamic Behavior of Materials, A Wiley-Interscience Publication, pp. 23-65, 1994.
[51] J. D. Campbell, “Dynamic Plasticity: Macroscopic and Microscopic Aspects,” Materials and Science Engineering, Vol. 12, pp. 3-21, 1973.
[52] D. Klahn, A. K. Mukherjee and J. E. Dorn, “Proceedings of the 2nd International Conference on the Strength of Metals and Alloys,” Vol. III, ASM, pp. 951, 1970.
[53] J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
[54] A. M. Eleiche and J. D. Campbell, “Strain-Rate Effects During Reverse Torsional Shear,” Experimental Mechanics, Vol. 16, pp. 281-290, 1976.
[55] J. Harding and J. Huddart, “The Use of the Double-Notch Shear Test in Determining the Mechanical Properties of Uranium at Very High Rates of Strain,” Proc. 2nd Conf. Mechanical Properties of Materials at High Rates of Strain, Inst. Physics, pp. 49-61, 1980.
[56] A. Seeger, “The Generation of Lattice Defects by Moving Dislocations, and its Application to the Temperature Dependence of the Flow-Stress of FCC Crystals,” The Philosophical Magazine, Vol. 46, pp. 1194-1217, 1955.
[57] U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
[58] H. Conrad, “Thermally Activated Deformation of Metals,” Journal of Metals, pp. 582-588, 1964.
[59] W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates, ”Journal of Applied Physics, Vol. 38, pp. 1863-1869, 1967.
[60] J. D. Campbell and A. R. Dowling, “The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
[61] J. Harding, “The Effect of High Strain Rate on Material Properties,” Materials at High Strain Rate on Material Properties, pp. 133-186, 1987.
[62] Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 104-124, 1992.
[63] J. D. Campbell, A. M. Eleiche and M. C. C. Tsao, Fundamental Aspects of Structural Alloy Design, Plenum Publishing Corp. New York, pp. 545-563, 1977.
[64] R. W. Klopp, R. J. Clifton and T. G. Shawki, “Pressure Shear Impact and Dynamic Viscoplastic Response of Metals,” Mechanics of Materials, Vol. 4, pp. 375-385, 1985.
[65] F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
[66] F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Metals and High Strength Alloy Steels,” in High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and other Advanced Materials, AD-Vol. 48, pp. 121-126, 1995.
[67] H. Kobayashi and B. Dodd, “A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth,” International Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.
[68] L. E. Sloter and H. R. Piehler, "Corrosion Fatigue Performance of Stainless Steel Hip Nails-Jewett Type," ASTM, Philadelphia, pp. 173-192, 1979.
[69] L. H. Bennett, J. L. Murray and T. B. Massalski, Binary alloy phase diagrams/editor-in-chief, Thaddeus B. Massalski; editors, Joanne L. Murray, Lawrence H. Bennett, Hugh Baker., Metals Park, Ohio :American Society for Metals, 1986.
[70] 賴耿陽, 金屬鈦理論與應用, 復漢出版社, pp.36, 1980.
[71] R. D. Curran, L. Seaman and D. A. Shockey, "Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications," pp. 22-26, 1980.
[72] U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.
[73] L. Shi and D. O. Northwood, “The Mechanical Behavior of an AISI Type 310 Stainless Steel,” Acta Metallurgica et Materialia, Vol. 43, pp. 453-460, 1995.
[74] R. Kapoor and S. Nemat-Nasser, “Determination of Temperature Rise during High Strain Rate Deformation,” Mechanics of Materials, Vol. 27, pp. 1-12, 1998.
[75] K. Ameyama, K. Yamashita, T. Inaba and M. Tokizane, "Formation of (α+β) Microduplex Structure and Mechanical Properties in Meta-Stable β Titanium Alloys," J. Jpn. I. Met, Vol. 53, No. 11, pp. 1098-1104, 1989.
[76] Y. B. Xu, W. L. Zhong, Y. J. Chen, L. T. Shen, Q. Liu Y. L. Bai and M. A. Meyers, “Shear localization and Recrystallization in dynamic deformation of 8090Al-Li alloy,” Mater. Sci. Eng. A, 299, pp. 287-295, 2001.
[77] K. H. Hartmann, H. D. Kunze and L. W. Meyers, in “Shock Waves and High-Strain-Rate Phenomena in Metals,” (ed. by M. A. Meyers and L. E. Murr), pp. 325-337, 1981.
[78] M. A. Meyers, G. Subash, B. K. Kad and L. Prasad, “Evolution of microstructure and shear-band formation in α-hcp titanium,” Mechanics of Materials, Vol. 17, 1997, pp. 175-193.
[79] W. S. Lee, C. Y. Liu, “Comparison of dynamic compressive flow behavior of mild and medium steels over wide temperature range,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 36, n 11, November, 2005, pp. 3175-3186.
[80] R. E. Reed-Hill, C. V. Iswaran and M. J. Kaufman, ”A power law model for the flow stress and strain-rate sensitivity in CP titanium,” Scripta Metallurgica et Materialia, v 33, n 1, Jul 1, 1995, pp. 157-162.
[81] E. Bayraktar and S. Altintas, “Some Problems in Steel Sheet Forming Processes”, J. Mat. Process. Technol., Vol. 80-81, pp. 83-89, 1998.