| 研究生: |
周筠喬 Chou, Yun-Chiao |
|---|---|
| 論文名稱: |
不同負荷下高溫厭氧生物膜反應槽中甲烷菌群之多源蛋白體分析 Metaproteomic Analysis of Methanogens in the Thermophilic Biofilm Reactor Treating Terephthalate at Different Loadings |
| 指導教授: |
吳哲宏
Wu, Jer-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 蛋白質體 、甲烷菌 、甲烷化 、對苯二甲酸 、負荷 |
| 外文關鍵詞: | proteomics, methanogens, methanogenesis, terephthalate, loading |
| 相關次數: | 點閱:103 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了解在不同環境下,微生物代謝功能表現的差異,本研究建立一項免標定蛋白質體的分析方法(label-free proteomic)。此方法主要是修改蛋白豐富度因子(NSAF),導入一個housekeeping gene當作內標(本研究使用elongation factor),將不同的樣本的基因表現作正規化,使得樣本與樣本之間的基因表現水平可以進行比較。本研究中運用這個方法來探討高溫厭氧生物膜反應槽中,甲烷菌在不同負荷下之蛋白質體表現。
在厭氧生物處理系統中,甲烷菌扮演重要的角色,負責有機物降解的最後一個步驟,使反應槽能操作在穩定狀態下,並將有機物轉換成甲烷與二氧化碳等最終產物。因此,了解甲烷菌在不同環境下代謝路徑及調控機制的變化是很重要的,相關知識將有助於提昇厭氧生物處理系統的效率。在本研究中,分別將高溫厭氧生物膜反應槽操作在3及 0.25 kg-TA/m3-day的負荷時,監測反應槽操作效率並萃取蛋白,進行二維奈米級高效液相層析儀串聯式質譜儀的分析,分別從系統中主要之甲烷菌Methanosaeta thermophila、Methanosaeta concilii及Methanolinea tarda,測得667、453及323個實際表現蛋白的身分,其中有322、132及83個蛋白重複出現在兩個負荷的樣本中,這些蛋白佔各菌總蛋白豐富度約90%、67%及70%,顯示出M. thermophila對於負荷的改變影響較小,M. concilii及M. tarda則較大。根據KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway的分類分析,顯示出約有30-40%是參與甲烷化路徑,在M. thermophila約比M. concilii及M. tarda高出約10%的蛋白豐富度,但在不同負荷下對M. concilii及M. tarda參與甲烷化之蛋白豐富度有明顯影響(大於10%),而對 M. thermophila的影響卻很小(小於1%)。更進一步檢視參與甲烷化路徑之中的各個基因表現,結果發現雖然負荷變化對M. thermophila的基因表現影響不顯著,但在負荷提升時,代謝醋酸第一個步驟之酵素(acetyl-coenzymeA synthetase, acs),有豐富度明顯增加趨勢(增加大於兩倍),此酵素之功能為將醋酸(acetate)轉換為乙醯輔酶A(acetyl-CoA),但在嗜醋酸型甲烷化第二步驟之酵素(acetyl-CoA decarbonylase/synthase, cdh)則無明顯向上調節,推測當負荷提升時增加代謝醋酸產生之乙醯輔酶A用來細胞生長而非提升甲烷化效率。值得注意的是Methanosaeta 在過去被認為只能利用醋酸產生甲烷,然而在我們的系統中M. thermophila卻發現整套利用二氧化碳產生甲烷的酵素被表現出來,雖然所佔之豐富度較嗜醋酸型甲烷化低,顯示能量來源還是以醋酸代謝為主,但仍可能提供另一個產生能量來源的路徑,並有助於調節反應槽內的氫分壓。在Methanosaeta屬底下之另一嗜醋酸型甲烷菌種 M. concilii,則與M. thermophila很不一樣的功能性表現。當負荷降低時,參與甲烷化蛋白之豐富度約降為高負荷之一半,而在代謝輔酶及維他命的功能中卻有顯著的向上調節的趨勢(約17%)。更進一步檢視,發現主要是由硫胺素(Thiamine)的代謝及葉酸(Folate)的合成有關蛋白的提升所造成。與M. thermophila有很大的不同是在參與嗜醋酸型甲烷化之蛋白表現則幾乎沒有差異,且負荷提升時使豐富度增加,而在嗜氫型甲烷化之路徑則缺少3~4個關鍵酵素被偵測到,使得代謝路徑不完整。在嗜氫型甲烷菌M. tarda的分析結果也顯示出負荷對其能量代謝之影響,與M. concilii較為相似,但在功能未知的蛋白中,卻也出現了相當大的差異,這也指出當環境產生變化時甲烷菌的基因表現還有一些未知的調節機制,參與嗜氫型甲烷化之蛋白也隨著負荷上升時而表現量提升。此外,還有一些蛋白表現的調節在環境改變之下扮演著重要的角色,像是S-layer的形成,可以保護細胞減少外在環境變化的影響。膜蛋白運輸可以傳輸細胞生長時必須之無機離子及胺基酸等物質的調控,也可將毒性物質輸出,使細胞免於受到傷害。還有一些抵抗壓力之蛋白的表現也顯示出甲烷菌生長在本系統中需面對許多的環境衝擊。整合上述之研究成果,我們所運用之研究方法成功地提供了甲烷菌在反應槽中實際功能表現的資訊,更進一步了解甲烷菌在負荷改變下之代謝路徑及調節機制。
To understand the regulation of gene expression in the perturbation environments, a label-free quantitative proteomic approach called E-NSAF was developed in this study. The concept of E-NSAF is using a selected housekeeping gene, which can maintain the stable expressed level under different experimental conditions (elongation factor is selected in this study), as an internal standard to normalize the protein abundance factor (NSAF). In this study, this approach is applied to investigate metaproteome of methanogens in the thermophilic biofilm reactor during treating terephthalate (TA) at different loading conditions.
In the anaerobic biological treatment processes, methanogens are the key microorganisms that are responsible for the final step of degradation of organic compounds. Therefore, to achieve stable and efficient operation in the anaerobic bioreactor, the further understanding of the metabolic pathway and regulatory mechanisms within the methanogens is highly desirable. In this study, thermophilic biofilm reactor was operated under two loading stages (3 vs 0.25 kg-TA/m3-day), and monitored the performance of bioreactor. After that, protein extracted from the bioreactor while reached the high removal rate of terephthalate. Totally, the 2-D nano HPLC combined with Obitrap mass spectrometry detected expression of 667, 453, and 323 coding genes of Methanosaeta thermophila, Methanosaeta concilii, and Methanolinea tarda corresponding to a detected rate of 39%, 16%, and 16%, respectively of total protein coding genes. Among these, 322, 132, and 83 proteins were detected at both loadings. These proteins contained approximately 90%, 67%, and 70% of total relative abundance. The results indicated that the perturbation of loading have great impact on M. concilii and M. tarda other than predominant methanogens M. thermophila. The classification of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway revealed that about 30-40% of abundance is involved in methanogenesis, and higher abundance in M. thermophila than M. concilii and M. tarda (higher by 10%). However, M. concilii and M. tarda have great impact (increased more than 10 %) within the increasing loading quite different from M. thermophila (less than 1% difference). Further analysis proteins involved in methanogenesis of M. thermophila shows the up-regulated (over 2-fold) of acetyl-coenzymeA synthetase (acs), which catalyzed the first step of acetate degradation, even if the less influence during the increasing loading. Nevertheless, the second step of aceticlastic methanogenesis was not up-regulated obviously (less than 2-fold). The possible explanation is that the acetyl-CoA forming from acetate degradation was used to cell growth instead of methanogenesis. Remarkably, it has been long determined that Methanosaeta are obligatory acetoclastic methanogens, the only substrate for methane formation and energy biosynthesis is acetate. Surprisingly, the entire suite of proteins detected that involved in hydrogenotrophic methanogenesis pathway were found in M. thermophila. Even though expressed at lower abundance compared to aceticlastic methanogenesis, acetate utilized still the main energy source rather than the CO2-reducing pathway. M. concilii, which is in the same genus of Methanosaeta, shows differentially functional expression from M. thermophila. Almost two-fold up-regulated in the entire aceticlastic methanogenesis within the loading increased, but the incomplete hydrogenotrophic methanogenesis pathway (lack of 3-4 essential enzymes) was observed. The hydrogenotrophic methanogens, Methanolinea tarda, almost all of the proteins were up-regulated more than 2-fold when the loading increased, implying the ability of methane generation by using CO2/H2 will improve as the loading increased. Besides, the adapted strategies of methanogens such as S-layer formation, stress resistance proteins, and regulated the membrane transport were observed in this study, indicated that methanogens encountered several environmental challenges in the terephthalate-degrading system during the changing loading. Totally, we provide the new insight into the biological processes and ecological functions of methanogens in the complex ecosystem. The findings obtained in this study can provide the further ecological understanding of methanogens under the perturbation environments.
Abouhamad WN, Manson M, Gibson MM & Higgins CF (1991) Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol Microbiol 5: 1035-1047.
Abram F, Enright AM, O'Reilly J, Botting CH, Collins G & O'Flaherty V (2011) A metaproteomic approach gives functional insights into anaerobic digestion. J Appl Microbiol 110: 1550-1560.
Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143-169.
Anderson I, Ulrich LE, Lupa B, et al. (2009) Genomic characterization of methanomicrobiales reveals three classes of methanogens. PLoS One 4: e5797.
Bapteste E, Brochier C & Boucher Y (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1: 353-363.
Chao TC & Hansmeier N (2012) The current state of microbial proteomics: where we are and where we want to go. Proteomics 12: 638-650.
Chelliapan S, Wilby T, Yuzir A & Sallis PJ (2011) Influence of organic loading on the performance and microbial community structure of an anaerobic stage reactor treating pharmaceutical wastewater. Desalination 271: 257-264.
Chen CL, Wu JH & Liu WT (2008) Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia. Water Res 42: 1963-1976.
Chen CL, Macarie H, Ramirez I, Olmos A, Ong SL, Monroy O & Liu WT (2004) Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate. Microbiology 150: 3429-3440.
Conrad R, Erkel C & Liesack W (2006) Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr Opin Biotechnol 17: 262-267.
Cottrell JS (2011) Protein identification using MS/MS data. J Proteomics 74: 1842-1851.
Craig R & Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20: 1466-1467.
de Jonge HJ, Fehrmann RS, de Bont ES, et al. (2007) Evidence based selection of housekeeping genes. PLoS One 2: e898.
Delgado-Saborit JM, Aquilina NJ, Meddings C, Baker S & Harrison RM (2009) Model development and validation of personal exposure to volatile organic compound concentrations. Environ Health Perspect 117: 1571-1579.
Deppenmeier U (2004) The membrane-bound electron transport system of Methanosarcina species. J Bioenerg Biomembr 36: 55-64.
Enoki M, Shinzato N, Sato H, Nakamura K & Kamagata Y (2011) Comparative proteomic analysis of Methanothermobacter themautotrophicus DeltaH in pure culture and in co-culture with a butyrate-oxidizing bacterium. Plos One 6: e24309.
Fallah N, Bonakdarpour B, Nasernejad B & Alavi Moghadam MR (2010) Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT). J Hazard Mater 178: 718-724.
Fenn JB, Mann M, Meng CK, Wong SF & Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246: 64-71.
Ferry JG & Lessner DJ (2008) Methanogenesis in marine sediments. Ann N Y Acad Sci 1125: 147-157.
Fioramonte M, dos Santos AM, McIlwain S, Noble WS, Franchini KG & Gozzo FC (2012) Analysis of secondary structure in proteins by chemical cross-linking coupled to MS. Proteomics 12: 2746-2752.
Garcia JL, Patel BK & Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6: 205-226.
Giometti CS, Reich CI, Tollaksen SL, Babnigg G, Lim H, Yates JR, 3rd & Olsen GJ (2001) Structural modifications of Methanococcus jannaschii flagellin proteins revealed by proteome analysis. Proteomics 1: 1033-1042.
Goodchild A, Raftery M, Saunders NF, Guilhaus M & Cavicchioli R (2005) Cold adaptation of the Antarctic archaeon, Methanococcoides burtonii assessed by proteomics using ICAT. J Proteome Res 4: 473-480.
Gunnigle E, McCay P, Fuszard M, Botting CH, Abram F & O'Flaherty V (2013) A functional approach to uncover the low temperature adaptation strategies of the archaeon Methanosarcina barkeri. Appl Environ Microbiol.
Guo Y, Ma SF, Grigoryev D, Van Eyk J & Garcia JG (2005) 1-DE MS and 2-D LC-MS analysis of the mouse bronchoalveolar lavage proteome. Proteomics 5: 4608-4624.
Habicht KS, Miller M, Cox RP, et al. (2011) Comparative proteomics and activity of a green sulfur bacterium through the water column of Lake Cadagno, Switzerland. Environ Microbiol 13: 203-215.
Hedderich R & Whitman WB (2006) Physiology and Biochemistry of the Methane-Producing Archaea. Springer, 233 Spring Street, New York, Ny 10013, United States.
Hedderich R, Koch J, Linder D & Thauer RK (1994) The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. Eur J Biochem 225: 253-261.
Hochheimer A, Linder D, Thauer RK & Hedderich R (1996) The molybdenum formylmethanofuran dehydrogenase operon and the tungsten formylmethanofuran dehydrogenase operon from Methanobacterium thermoautotrophicum. Structures and transcriptional regulation. Eur J Biochem 242: 156-162.
Hori T, Haruta S, Ueno Y, Ishii M & Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72: 1623-1630.
Hutten TJ, Bongaerts HC, van der Drift C & Vogels GD (1980) Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri. Antonie Van Leeuwenhoek 46: 601-610.
Imachi H, Sakai S, Sekiguchi Y, Hanada S, Kamagata Y, Ohashi A & Harada H (2008) Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58: 294-301.
Ishihara T, Fukuda I, Morita A, Takinami Y, Okamoto H, Nishimura S & Numata Y (2011) Development of quantitative plasma N-glycoproteomics using label-free 2-D LC-MALDI MS and its applicability for biomarker discovery in hepatocellular carcinoma. J Proteomics 74: 2159-2168.
Issaq H & Veenstra T (2008) Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. Biotechniques 44: 697-698, 700.
Jehmlich N, Kleinsteuber S, Vogt C, et al. (2010) Phylogenetic and proteomic analysis of an anaerobic toluene-degrading community. J Appl Microbiol 109: 1937-1945.
Jetten MSM, Stams AJM & Zehnder AJB (1992) Methanogenesis from Acetate - a Comparison of the Acetate Metabolism in Methanothrix-Soehngenii and Methanosarcina Spp. Fems Microbiology Reviews 88: 181-197.
Joung JY, Lee HW, Choi H, Lee MW & Park JM (2009) Influences of organic loading disturbances on the performance of anaerobic filter process to treat purified terephthalic acid wastewater. Bioresour Technol 100: 2457-2461.
Karas M & Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60: 2299-2301.
Kobayashi HA, Conway de Macario E, Williams RS & Macario AJ (1988) Direct characterization of methanogens in two high-rate anaerobic biological reactors. Appl Environ Microbiol 54: 693-698.
Kowalska E, Kujda M, Wolak N & Kozik A (2012) Altered expression and activities of enzymes involved in thiamine diphosphate biosynthesis in Saccharomyces cerevisiae under oxidative and osmotic stress. FEMS Yeast Res 12: 534-546.
Lauro FM, DeMaere MZ, Yau S, et al. (2011) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5: 879-895.
Leclerc M, Delgenes JP & Godon JJ (2004) Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6: 809-819.
Lederer FL, Weinert U, Gunther TJ, Raff J, Weiss S & Pollmann K (2013) Identification of multiple putative S-layer genes partly expressed by Lysinibacillus sphaericus JG-B53. Microbiology 159: 1097-1108.
Lessner DJ, Li L, Li Q, et al. (2006) An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc Natl Acad Sci U S A 103: 17921-17926.
Li Q, Li L, Rejtar T, Karger BL & Ferry JG (2005) Proteome of Methanosarcina acetivorans Part I: an expanded view of the biology of the cell. J Proteome Res 4: 112-128.
Liu H, Sadygov RG & Yates JR, 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76: 4193-4201.
Liu Y & Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125: 171-189.
Lykidis A, Chen CL, Tringe SG, et al. (2011) Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. ISME J 5: 122-130.
Mann M, Hendrickson RC & Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70: 437-473.
Maron PA, Ranjard L, Mougel C & Lemanceau P (2007) Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol 53: 486-493.
Moriya Y, Itoh M, Okuda S, Yoshizawa AC & Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35: W182-185.
Nicot N, Hausman JF, Hoffmann L & Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56: 2907-2914.
Niessen S, McLeod I & Yates JR, 3rd (2006) HPLC separation of digested proteins and preparation for matrix-assisted laser desorption/ionization analysis. CSH Protoc 2006.
O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007-4021.
Pandey A & Lewitter F (1999) Nucleotide sequence databases: a gold mine for biologists. Trends Biochem Sci 24: 276-280.
Pandey A & Mann M (2000) Proteomics to study genes and genomes. Nature 405: 837-846.
Park C, Novak JT, Helm RF, Ahn YO & Esen A (2008) Evaluation of the extracellular proteins in full-scale activated sludges. Water Res 42: 3879-3889.
Patel VJ, Thalassinos K, Slade SE, Connolly JB, Crombie A, Murrell JC & Scrivens JH (2009) A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J Proteome Res 8: 3752-3759.
Pedersen S, Bloch PL, Reeh S & Neidhardt FC (1978) Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell 14: 179-190.
Perkins DN, Pappin DJ, Creasy DM & Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567.
Qiu YL, Sekiguchi Y, Imachi H, et al. (2004) Identification and isolation of anaerobic, syntrophic phthalate isomer-degrading microbes from methanogenic sludges treating wastewater from terephthalate manufacturing. Appl Environ Microbiol 70: 1617-1626.
Ram RJ, Verberkmoes NC, Thelen MP, et al. (2005) Community proteomics of a natural microbial biofilm. Science 308: 1915-1920.
Rizzi A, Zucchi M, Borin S, Marzorati M, Sorlini C & Daffonchio D (2006) Response of methanogen populations to organic load increase during anaerobic digestion of olive mill wastewater. Journal of Chemical Technology and Biotechnology 81: 1556-1562.
Rohlin L, Leon DR, Kim U, Loo JA, Ogorzalek Loo RR & Gunsalus RP (2012) Identification of the major expressed S-layer and cell surface-layer-related proteins in the model methanogenic archaea: Methanosarcina barkeri Fusaro and Methanosarcina acetivorans C2A. Archaea 2012: 873589.
Rother M, Oelgeschlager E & Metcalf WM (2007) Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans. Arch Microbiol 188: 463-472.
Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A & Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65: 1280-1288.
Singh-Wissmann K & Ferry JG (1995) Transcriptional regulation of the phosphotransacetylase-encoding and acetate kinase-encoding genes (pta and ack) from Methanosarcina thermophila. J Bacteriol 177: 1699-1702.
Smith KS & Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15: 150-155.
Souza GH, Catharino RR, Ifa DR, Eberlin MN & Hyslop S (2008) Peptide fingerprinting of snake venoms by direct infusion nano-electrospray ionization mass spectrometry: potential use in venom identification and taxonomy. J Mass Spectrom 43: 594-599.
Tan F, Chen S, Zhang Y, Cai Y & Qian X (2010) A simple and efficient frit preparation method for one-end tapered-fused silica-packed capillary columns in nano-LC-ESI MS. Proteomics 10: 1724-1727.
Tessier D, Yclon P, Jacquemin I, Larre C & Rogniaux H (2010) OVNIp: an open source application facilitating the interpretation, the validation and the edition of proteomics data generated by MS analyses and de novo sequencing. Proteomics 10: 1794-1801.
Thauer RK, Kaster AK, Seedorf H, Buckel W & Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6: 579-591.
Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T & Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79: 507-536.
Thiede B, Kretschmer A & Rudel T (2006) Quantitative proteome analysis of CD95 (Fas/Apo-1)-induced apoptosis by stable isotope labeling with amino acids in cell culture, 2-DE and MALDI-MS. Proteomics 6: 614-622.
Tyson GW, Chapman J, Hugenholtz P, et al. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37-43.
van Schaik W & Abee T (2005) The role of sigmaB in the stress response of Gram-positive bacteria -- targets for food preservation and safety. Curr Opin Biotechnol 16: 218-224.
VerBerkmoes NC, Denef VJ, Hettich RL & Banfield JF (2009) Systems biology: Functional analysis of natural microbial consortia using community proteomics. Nat Rev Microbiol 7: 196-205.
Vorholt JA & Thauer RK (1997) The active species of 'CO2' utilized by formylmethanofuran dehydrogenase from methanogenic Archaea. Eur J Biochem 248: 919-924.
Walker CB, Redding-Johanson AM, Baidoo EE, et al. (2012) Functional responses of methanogenic archaea to syntrophic growth. ISME J 6: 2045-2055.
Wang J, Zhang Y, Jiang H, Cai Y & Qian X (2006) Phosphopeptide detection using automated online IMAC-capillary LC-ESI-MS/MS. Proteomics 6: 404-411.
Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF & Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13: 19-50.
Williams TJ, Burg DW, Raftery MJ, Poljak A, Guilhaus M, Pilak O & Cavicchioli R (2010) Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii. Part I: the effect of growth temperature. J Proteome Res 9: 640-652.
Williams TJ, Burg DW, Ertan H, Raftery MJ, Poljak A, Guilhaus M & Cavicchioli R (2010) Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii. Part II: the effect of different methylated growth substrates. J Proteome Res 9: 653-663.
Williamson BL, Purkayastha S, Hunter CL, Nuwaysir L, Hill J, Easterwood L & Hill J (2011) Quantitative protein determination for CYP induction via LC-MS/MS. Proteomics 11: 33-41.
Wilmes P & Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6: 911-920.
Wilmes P, Bowen BP, Thomas BC, et al. (2010) Metabolome-proteome differentiation coupled to microbial divergence. MBio 1.
Wilmes P, Andersson AF, Lefsrud MG, et al. (2008) Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal. ISME J 2: 853-864.
Wu JH, Liu WT, Tseng IC & Cheng SS (2001) Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology 147: 373-382.
Wu JH, Wu FY, Chuang HP, Chen WY, Huang HJ, Chen SH & Liu WT (2013) Community and proteomic analysis of methanogenic consortia degrading terephthalate. Appl Environ Microbiol 79: 105-112.
Xia Q, Wang T, Hendrickson EL, Lie TJ, Hackett M & Leigh JA (2009) Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis. BMC Microbiol 9: 149.
Yadvika, Santosh, Sreekrishnan TR, Kohli S & Rana V (2004) Enhancement of biogas production from solid substrates using different techniques - a review. Bioresource Technology 95: 1-10.
Yates JR, 3rd (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33: 1-19.
Yates JR, 3rd, Eng JK, McCormack AL & Schieltz D (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67: 1426-1436.
Zhu W, Smith JW & Huang CM (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010: 840518.
Zhu W, Reich CI, Olsen GJ, Giometti CS & Yates JR, 3rd (2004) Shotgun proteomics of Methanococcus jannaschii and insights into methanogenesis. J Proteome Res 3: 538-548.
Zielinska M, Cydzik-Kwiatkowska A, Zielinski M & Debowski M (2013) Impact of temperature, microwave radiation and organic loading rate on methanogenic community and biogas production during fermentation of dairy wastewater. Bioresour Technol 129: 308-314.
Zinder SH (1993) Physiological ecology of methanogens. Chapman and Hall, Inc., 29 West 35th Street, New York, New York, USA 2-6 Boundary Row, London SE1 8HN, England.
Zinder SH & Anguish T (1992) Carbon Monoxide, Hydrogen, and Formate Metabolism during Methanogenesis from Acetate by Thermophilic Cultures of Methanosarcina and Methanothrix Strains. Appl Environ Microbiol 58: 3323-3329.