簡易檢索 / 詳目顯示

研究生: 林志豪
Lin, Chih-Hao
論文名稱: 鋁、鎳添加物對鋰離子電池陰極材料 -LiMn2O4電性及電化學性質之影響
Effect on conductivity and electrochemistry of the addition of Al(III) and Ni(II) ion to LiMn2O4
指導教授: 方滄澤
Fang, Tsang-Tse
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 133
中文關鍵詞: 鋰離子電池電化學
外文關鍵詞: LiMn2O4, EIS
相關次數: 點閱:70下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由X光繞射圖結果得知,在空氣中6000C下瑕燒4小時,所得不同劑量比之LiAlxNiyMn(2-x-y)O4陰極材料粉末,依然保持為立方晶之尖晶石結構,均為單一相並無其他雜相生成。且同時添加鎳離子、鋁離子的LiAlxNiyMn(2-x-y)O4陰極材料之XRD晶格常數,隨著3價鋁離子與2價鎳離子添加量的增加而逐漸下降。
    而經過球磨後之陰極材料粉末的粒徑大小有著明顯的改變,其單一粒徑大小由球磨前的1μm-2μm下降為40nm-100nm 之間,且陰極材料粉末晶粒聚集的程度也有著明顯改善。
    單一添加3價鋁離子之LiAlxMn(2-x)O4陰極材料粉末之導電率隨著添加量的增加而上升,然而單一添加2價鎳離子之LiNiyMn(2-y)O4陰極材料粉末之導電率則隨著添加量的增加而下降。而同時添加鎳離子、鋁離子的LiAlxNiyMn(2-x-y)O4陰極材料之導電率則隨著添加量的增加而下降。
    除此之外,同時添加3價鋁離子與2價鎳離子之不同組成之陰極材料LiAlxNiyMn(2-x-y)O4,可使得陰極材料結構中之Jahn-Teller效應下降,導致陰極材料結構更為穩定。因而使得陰極材料導電率轉折點發生溫度往下修正。
    同時添加3價鋁離子、2價鎳離子的LiAlxNiyMn(2-x-y)O4陰極材料之起始電容量,隨著3價鋁離子與2價鎳離子添加量的增加而逐漸下降,然而電池充放電之循環性隨著3價鋁離子與2價鎳離子添加量的增加而逐漸變好。
    球磨24小時後之各種組成之陰極材料粉末,所得的電荷轉移阻抗值,較未球磨之陰極材料粉末所得的電荷轉移阻抗值小,且電荷轉移阻抗值之大小也與導電率成反比,因此電荷轉移阻抗值隨著在LiMn2O4陰極材料內添加3價鋁離子而變小,且隨著2價鎳離子的添加而變大。
    除此之外,亦發現球磨24小時後之各種組成之陰極材料粉末,所得的電荷擴散阻抗值,也較未球磨之陰極材料粉末所得的電荷擴散阻抗值小。且球磨前與球磨後各種組成之表面積與電荷擴散阻抗之間的關係,由結果得知隨著球磨過程的進行,表面積因而變大而電荷轉移阻抗與電荷擴散阻抗係數皆隨著表面積的變大而變小。且由公式推導得知,電荷擴散阻抗係數與電荷擴散阻抗成正比,因此電荷擴散阻抗係數亦隨著表面積變大而變小。

    The addition of Al(III) and Ni(II) ions and ball mill treatment of the cathode materials- LiMn2O4 powder show crucial effects on conductivity(charge transfer resistance, in contrary.), cycle test and related electrochemical properties of lithium-ion batteries application. Conductivity shows an increase by adding Al(III) ion to LiMn2O4 powder(without ball mill treatment) while the Ni(II) or both of them(Al(III), Ni(II) at once )make a decrease, respectively. The addition of both Al(III) and Ni(II) ions also show the better performance in cycle test and lower the Jahn-Teller effect which would cause instability in structure of cathode material. Ball mill treatment(24hrs) on LiMn2O4 powder make the particle size from 1~2μm to 40~80nm (obtained by XRD) and improve the conductivity dramatically that have mentioned above. XRD data also show that increase the quantity in both Al(III) and Ni(II) ions in LiMn2O4 powder will accompany with a decrease in lattice constant in LiAlxNiyMn(2-x-y)O4 crystal.

    第一章 緒論.....................................1 1-1鋰離子電池的發展背景簡介.....................1 1-2 研究大綱及目的..............................4 第二章 理論基礎與文獻回顧.......................6 2-1 鋰離子電池簡介..............................6 2-1-1 鋰離子電池的工作原理......................6 2-1-2 鋰離子電池的理論電容量....................8 2-1-3 鋰離子電池的系統構造......................9 2-2 陰極材料的合成方法.........................11 2-2-1 高溫固態法...............................11 2-2-2 沉澱法...................................13 2-2-3 溶凝膠法.................................15 2-2-4 微波法...................................23 2-2-5 噴霧乾燥法...............................24 2-3 陰極材料的晶體結構.........................26 2-4 LiMn2O4電池系統電容量衰退的原因............31 2-5 鋰錳氧化物摻雜其他金屬改質研究.............34 2-5-1 鋰錳氧化物摻雜金屬元素之研究近況.........34 2-5-2 鋰錳氧化物摻雜金屬元素後之結構變化.......34 2-5-3 鋰錳氧化物摻雜金屬元素後之電化學特性.....37 2-5-4 鋰錳氧化物摻雜金屬元素後的充放電結構研究.39 2-6電化學分析方法..............................43 2-6-1 交流阻抗法簡介...........................43 2-6-2 等效電路.................................47 2-6-3 電化學系統模擬...........................51 2-6-4 擴散阻抗.................................54 2-6-5 常見電路元件之物理電化學性質.............56 2-6-6 理想交流阻抗圖譜.........................61 2-6-7 鋰離子電池系統的EIS應用..................64 第三章 實驗方法................................66 3-1 實驗藥品...................................66 3-2 陰極材料粉末之合成.........................67 3-3 陰極材料粉末性質鑑定.......................70 3-3-1 X光繞設分析.............................70 3-3-2 掃瞄式電子顯微鏡(SEM)分析................70 3-4 陰極材料之電性分析.........................71 3-4-1 試片製作.................................71 3-4-2 導電率之量測.............................71 3-5 硬幣型電池組裝.............................72 3-6 充放電測試.................................73 3-7 交流阻抗測試...............................73 第四章 結果與討論..............................76 4-1 陰極材料粉末之XRD繞設分析..................76 4-2 陰極材料粉末之電性分析.....................79 4-2-1 添加物對導電率之影響.....................79 4-2-2 溫度對導電率之影響.......................83 4-3 陰極材料粉末之充放電性質分析..............87 4-4 陰極材料粉末之交流阻抗性質分析............95 4-4-1 陰極材料粉末之表面型態分析...............95 4-4-2 陰極材料粉末之交流阻抗性質分析...........96 第五章 結論...................................111 第六章 參考文獻...............................113

    01. M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough and P. Grover,“Synthesis and Structural Characterization of the Normal Spinel Li[Ni2O4]”, Mat. Res. Bull., 20, 1137 (1985).

    02. A. Marini, V. Berbernni, V. Massarotti, G. Flor, R. Riccardi and M. Leonini,“Solid-State Reaction Study on the System Ni-Li2CO3”, Solid State Ionics, 32/33, 398 (1989).

    03. J. Morales, C. Peraz-Vicente and J. L. Tirado,“Cation Distribution and Chemical Deintercalation of Li1-XNi1+XO2”, Mat. Res. Bull., 25, 623 (1990).

    04. E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner and H. W. Lin,“A Rechargeable Li/LixCoO2 Cell”, J. Power Sources, 21, 25 (1987).

    05. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough,“LixCoO2 (0<x<1): A New Cathode Material for Batteries of High Energy Density”, Mat. Res. Bull., 15, 783 (1980).

    06. H. J. Orman and P. J. Wiseman,“Cobalt(III) Lithium-Oxide, Colio2 - Structure Refinement by Powder Neutron-Diffraction”, Acta. Cryst., 40, 12 (1984).

    07. A. Mendiboure, C. Delmas and P. Hagernmuller,“New Layered Structure Obtained By Electrochemical Deintercalation of the Metastable LiCoO2 (O2) Variety”, Mat. Res. Bull., 19, 1383 (1984).

    08. T. Nagaura and K. Tazawa,“Lithium Ion Rechargeable Battery”, Progess Batteries & Solar Cells, 9, 209 (1990).

    09. J. M. Tarascon and D. Guyomard, “The Li1+xMn2O4/C Rocking-Chair System: A Review”, Electrochimica Acta, 38, 1221 (1993).

    10. J. M. Tarascon and D. Guyomard,“Li Metal-Free Rechargeable Batteries Based on Li1+xMn2O4 Cathodes (0≦x≦1) and Carbon Anodes”, J. Electrochem. Soc., 138, 2864 (1991).

    11. J. M. Tarascon, D. Guyomard and G. L. Baker,“An Update of the Li Metal-Free Rechargeable Battery Based on Li1+XMn2O4 Cathodes and Carbon Anodes”, J. Power Sources, 43-44, 689 (1993).

    12. R. J. Gummow and M. M. Thackeray,“Lithium-Cobalt-Nickel-Oxide Cathode Materials Prepared at 400 Degree C for Rechargeable Lithium Batteries”, Solid. State Ionics, 53, 681 (1992).

    13. C. K. Jorgensen, in Atoms and Molecules (Academic Press, London, 1962), p. 80.

    14. S. W. Jang et al., J. Power Sources, 88(2), p. 274 (2000).

    15. A. Manthiram, J.O.M., March, 49(3), p. 43 (1997).

    16.尹邦躍, 奈米時代, p. 69, 五南圖書.

    17.費定國、袁正宇, 工業材料158期, p. 158 (2000) .

    18.許雪萍, 工業材料, 130, 104(1997).

    19. G. E. Blomgren, Lithium Batteries, Jean-Paul Gabano, Editor, Academic
    Press(1983).

    20. J. Pierre and P. Ramos, J. Power Sources, 54, 120 (1995).

    21. M. Kakihana, J. Sol-Gel Science and Technology, 6, 7 (1996).

    22. C. Delmas and I. Saadoune, Solid State Ionics, 53, 370 (1992).

    23. M. A. Aegerter [Ed.], Sol-Gel:Science and Technology:Proceedings of theWinter School on Glasses and Ceramics from Gels, Brazil, World Scientific,Singapore, 1989.

    24. A. C. Pierre,“Introduction to Sol-Gel Processing”, Kluwer Acadmic Publishers, 41998).

    25. C. K. Jorgensen, in Atoms and Molecules (Academic Press, London, 1962), p. 80.

    26. Z. S. Peng, C. R. Wan and C. Y. Jiang,“Synthesis by Sol-gel Process andCharacterization of LiCoO2 Cathode Materials”, J. Power Sources, 72, 215(1998).

    27.W. Liu and G.C. Farrington, J. Electrochem. Soc., 143, (3), p. 879 (1996).

    28. M. Kakihana, J. Sol-Gel Sci. Tech., 6, p. 7 (1996).

    29. H. Yan, X. Huang, Z. Lu, H. Huang, R. Xue, and L. Chen, J. Power Sources, 68,530, (1997).

    30.Y. Li, C. Wan, Y. Wu, C. Jiang and Y. Zhu, J. Power Sources, 85, 294 (2000).

    31. L. A. de Picciotto et al., Mat. Res. Bull., 19, p. 1497 (1984).

    32. A. Manthiram, and J.B. Goodenough, Can. J. Phys., 65, p. 1309 (1987).

    33. T. Shirane et al., Solid State Ionics, 79, p. 227 (1995).

    34. A. R. Armstrong and P.G. Bruce, Nature, 381, p. 499 (1996).

    35. H. Wang et al., Electrochem. Solid-State. Lett., 2, (10), p. 490 (1999).

    36.G. Dutta, A. Manthiram, and J.B. Goodenough, J. Solid State Chem., 96, p. 123 (1992).

    37. A. Hirano et al., Solid State Ionics, 78, p. 123 (1995).

    38.楊模樺, 工業材料157期, p. 144 (2000).

    39.T. Hahn, International tables for crystallography, Vol. A, Kluwer Academic Publishers, Boston, p. 687 (1992).

    40. M. Wakihara, Materials Science and Engineering, R33, p. 109 (2001).

    41.劉定國,“鋰離子電池鋰錳系陰極材料之研究”, 碩士論文,台灣科技大學化工所, 2000.

    42. G. Pistoia, D. Zane and Y. Zhang, J. Electrochem. Soc., 142, 2551, 1995.

    43. M. M. Thackeray, S. H. Yang, A. T. Kahaian, K. D. Kepler, E. Skinner, T. T.Vaughey and S. A. Hackney, Electrochemical and Solid State Letters, 1. 17, 1998.
    44. P. Arora and R.E. White, J. Electrochem. Soc., 145, 3647, 1998.

    45. R. J. Gummow, A. D. Kock and M. M. Thacktray, Solid State Ionics, 53, 59,1994.

    46. D. H. Jang, Y. J. Shin and S. M. Oh, J. Electrochem. Soc., 143, 2204, 1996.

    47.陳金銘, 工業材料, 133, 85, 1997.

    48. Y. Gao and J. R. Dahn, Solid State Ionics, 84, 33, 1996.

    49. R. Fong, U. V. Sacken and J. R. Dahn, J. Electrochem. Soc., 137, 2009, 1990.

    50.M. Wakihara, Li Guohua, H. Ikuta and T. Uchida,“Chemical Diffusion Coefficients of Lithium in LiMyMn2-yO4 (M = Co and Cr)”, Solid State Ionics, 86, 907 (1996).

    51.K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita,“A New Three-Volt Spinel Li1+xMn1.5Ni0.5O4 for Secondary Lithium Batteries”, J. Electrochem. Soc., 143, 1067 (1996).

    52. L. Gouhua, H. Ikuta, T. Uchida and M. Wakihara,“The Spinel Phase LiMyMn2-yO4 (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries”, J. Electrochem. Soc., 143, 178, (1996).

    53. Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao and J. R. Dahn, “Synthesis and Electrochemistry of LiNixMn2-xO4”, J. Electrochem. Soc., 144, 205 (1997).

    54. K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita,“A New Three-Volt Spinel Li1+xMn1.5Ni0.5O4 for Secondary Lithium Batteries”, J. Electrochem. Soc., 143, 1067 (1996). ]

    55. J G Webster,“Eelctrical Impedance Tomography”, Adam Hilger,Bristol(1990).

    56. J. Ross MacDonald,“Impedance Spectroscopy - Emphasizing Solid Materials and Systems”, John Wiley & Sons, New Year(1987).

    57.“CMS300 Electrochemical System Operator’s Manual”, Gamry Instruments, Inc., USA.(1993).

    58.“Basics on AC Impedance Measurements”, Application Note AC- 1.Available upon request from EG&G Princeton Applied Research,Electrochemical Instruments Division.

    59.“Basics od AC Impedance Measurements”, Application Note AC- 2.Available upon request from EG&G Princeton Applied Research,Electrochemical Instruments Division.

    60.“Electrochemical Corrosion Measurements”, Application Note CORR- 4.Available upon request from EG&G Princeton Applied Research,Electrochemical Instruments Division.

    61. Mars G. Fontana,“Corrosion Engineering”McGraw-Hill, NewYork(1986).

    62. Delahay, Paul,“The Electrical Double Layer and Electrode Kinetics”, Interscience, New York(1965).

    63. G. Nagasubramanian, J. Power Sources, 87, 226 (2000).

    64. L. Zhang, Electrochimica Acta, 43, 3333 (1998).

    65. A. Ana, F. Eschbach, J. Howard, F. Malaspina, V. Meadows, Electrochimica Acta, 40, 2211 (1995).

    66. E. Karden, S. Buller, R. W. De Doncker, J. Power Sources, 85, 72 (2000).

    67. G. Pistoia, A. Antonini, R. Rosati, and D. Zane, Electrochimica Acta, 41, 2683 (1996).

    68. J. Fan, and P. S. Fedkiw, J. Power Sources, 72, 165 (1998).

    69. Y. M. Choi, S. Pyun, J. S. Bae, and S. I. Moon, J. Power Sources, 56, 25 (1995).

    70. D. H. Jang, Y. J. Shin, and S. M. Oh, J. Electrochem. Soc., 143, 2204 (1996).

    71.吳銘訓,“YSr2Cu3(1-a)Mo3aOy及LaBa2Cu3Oy高溫超導體的合成及熱處理對其晶體結構及超導性的影響”, 國立成功大學材料科學及工程學系博士論文 (1998).

    下載圖示 校內:立即公開
    校外:2003-07-16公開
    QR CODE