| 研究生: |
馬崇仁 Ma, Chung-Jen |
|---|---|
| 論文名稱: |
運用離子交換法製作熱光調變Mach-Zehnder波導干涉器於光學玻璃基板之上 Tunable Thermo-Optical Mach-Zehnder Waveguide Interferometer Fabricated in Glass by Ion-Exchange Method |
| 指導教授: |
莊文魁
Chuang, Ricky Wenkuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 光波導 、離子交換 、調變器 |
| 外文關鍵詞: | waveguide, ion-exchange, modulator |
| 相關次數: | 點閱:86 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用離子交換技術成功的製作出可靠度高且造價相對低廉的積體光波導元件,並將其建構在矽酸鹽玻璃基板N-BK7,之後再搭配光學量測來了解其特性與效能。
首先,利用Ag+-Na+離子交換技術製作平面波導於矽酸鹽玻璃之中,透過有系統性的分析,建立波導特性與離子交換過程參數,如玻璃表層最大折射率改變量、擴散深度以及擴散係數等等。利用此分析結果,採用濕式離子交換去製作出操作波段1500nm之MZI架構下的Y型光波導,而混合熔鹽的配方為AgNO3:NaNO3(摩爾比為0.04:1)且溫度維持360℃。
接著為了觀察元件光特性調變的情形,熱光效應在藉由施加偏壓下,使其電極產生一個局部熱效應,而在電性的分析上由公式推導出施加電壓相對電極阻值及電極溫度的關係式,達到π相位的溫度變化為5℃。而施加電壓後電極所消耗的功率,可以改變MZ arms間的干涉程度時約80mW可達到第一個π相位。另一方面,也討論到施加不同頻率的電訊號於光調變器上,所造成的影響,當電訊號的頻率從50Hz增加至850Hz時,元件的動態調變深度有下降至一半的趨勢。
In this thesis, ion-exchange technology has been successfully used to realize dependable and low-cost optical waveguide devices in silicate glass such as N-BK7. First, the planar waveguides were fabricated via Ag+-Na+ ion-exchange in silicate glass. The effects of the silver ion diffusion in this glass matrix has been evaluated to determine the silver and sodium ion diffusion coefficients as well as the value of the maximum refractive index change. With these data obtained, Mach-Zehnder interferometers based on Y-junction waveguides operating at λ=1550nm were fabricated by the wet ion-exchange using AgNO3:NaNO3 molten salt with the mole ratio of 0.04 to 1 maintained at a temperature of 360℃. To evaluate these devices, the thermo-optical effect was applied to the active region via heating electrode located near one of the two Mach-Zehnder arms. Based on the measurement results obtained, the input power and the temperature change observed at the maximum signal attenuation were 80 mW and 5℃, respectively. reached via heating electrodes on the side of the Mach–Zehnder arms.
Chapter 1
[1]S. E. Miller, “Integrated optics: An introduction,” Bell Syst. Tech. J., Vol. 48, pp. 2059-2069, 1969.
[2]F. Kane and Robert R. Krchnavek, “Beazocyclobutene optical waveguide,” IEEE Photo. Tech. Lett., Vol. 7, No. 5, pp. 535-537, 1995.
[3]G. H. Olsen, “InGaAsP laser diodes,” Opt. Eng., Vol. 20, pp. 440-445, 1981.
[4]P. Hall and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., Vol. 23, pp. 45-46, 1973.
[5]T. Miya, T. Hosaka, Y. Terunuma, and T. Miyashita, “Ultra low loss single-mode fibers at 1.55 μm,” Rev. Electrical Commun. Lab., Vol. 27, pp. 497-506, 1979.
[6]H. Nishihara, M. Haruna, and T. Suhara, Optical integrated circuits. New York: McGraw-Hill Book Company, 1989.
[7]R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium Doped Silica Single-Mode Fibre Lasers,” Electron. Lett., Vol. 21, pp. 738-740, 1985.
[8]S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions,” Electron. Lett., Vol. 21, pp. 737-738, 1985.
[9]C. W. Pitt, “Sputtered glass optical waveguides,” Electron. Lett., Vol. 9, pp. 401-403, 1973.
[10]G. H. Chartier, P. Jaussaud, A. D. Oliveira, and O. Parriaux, “Optical waveguides fabricated by electric-field controlled ion exchange in glass,” Electron. Lett., Vol. 14, pp. 132-134, 1978.
Chapter 2
[1]J. J. Gribble and J. M. Arnold, “Beam propagation method and geometrical optics,” IEE Proc., Vol. 135, pp. 343-348, 1988.
[2]M. C. Gupta and J. Ballato, The handbook of photonics 2nd ed. Boca Raton: CRC/Taylor & Francis, 2007.
[3]R. H. Doremus, “Exchange and Diffusion of Ions in Glass,” J. Phys. Chem., Vol. 68, pp. 2212-2218, 1964.
[4]R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: A review,” J. Lightwave Technol., Vol. 6, pp. 984-1002, 1988.
[5]C. A. Millar and R. H. Hutchins, “Manufacturing tolerances for silver-sodium ion-exchange planar optical waveguides,” J. Phys. D: Appl. Phys., Vol. 11, pp. 1567-1576, 1978.
[6]R. Doremus, Glass Science. New York: Wiley & Sons, 1973. pp. 310-315
[7]P. Benech, I. Schanen, and V. Minier “Integrated Optics Sensors On Glass,” Proc. SPIE, Vol. 5728, pp. 74-82, 2005
[8]T. Fujino, K. Sasaki, and K. Marumoto, “X-ray mask fabrication process using Crmask and ITO stopper in the dry etch of W absorber,” Jpn. J. Appl. Phys., Vol. 31, pp. 4086-4090, 1992.
[9]O. Mikami and S. Zembutsu, “Coupling-length adjustment for and optical directional coupler as a 2×2 switch,” Appl. Phys. Lett., Vol. 35, pp. 38-40, 1979.
[10]Solomon Musikant, Optical materials: an introduction to selection and application. New York: Dekker, 1985.
[11]J. Albert, Introduction to Glass Integrated Optics. Boston: Artech House, 1992.
[12]R. G. Eguchi, E. A. Maunders, and I. K. Naik, “Fabrication of low loss waveguide by ion exchange,” Proc. SPIE, Vol. 408, pp. 21-24, 1983.
[13]Advanced Optics, Schott North America, Inc. “Optical Glass Data Sheets,” 2008 (http: //www.us.schott.com).
[14]Borofloat Division, Schott AG, Mainz, Germany. “Borofloat Data Sheet,” 2008 (http: //www. schott.com/borofloat).
[15]D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids., Vol. 263-264, pp. 369-381, 2000.
[16]P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber amplifiers: Fundamentals and Technology. New York: Academic Press, 1999.
[17]T. Izawa and H. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plates,” Appl. Phys. Lett., Vol. 21, pp. 584-586, 1972.
[18]J. L. Jackel, “Glass waveguides made using low melting point nitrate mixtures,” Appl. Opt., Vol. 27, pp. 472-475, 1988.
[19]J. E. Broquin, “Ion-exchanged integrated devices,” Proc. SPIE, Vol. 4277, pp.105-117, 2001.
[20]G. Steward and P. Laybourn, “Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts,” IEEE J. Quantum Electr., Vol. 14, No. 12, pp. 930- 934, 1978.
[21]G. H. Chartier, P. Jaussaud, A. D. Oliveira, and O. Parriaux “Optical waveguides fabricated by electric-field controlled ion-exchange in glass,” Electron. Lett., Vol. 14, pp.132-134, 1978.
[22]K. Forrest, S. J. Pagano, and W. Viehmann, “Channel waveguides in glass via silver-sodium field-assisted ion exchange,” J. Lightwave Technol., Vol. LT-4, pp. 140-150, 1986.
[23]C. Guenther and D. Jestel, “Buried waveguides with nearly circular cross-sections produced by solid phase silver ion exchange,” Proc. SPIE, Vol. 1014, p. 109, 1989.
[24]S. Honkanen and A. Tervonen, “Experimental analysis of Ag+-Na+ exchange in glass with Ag film ion sources for planar optical waveguide fabrication,” J. Appl. Phys., Vol. 63, pp. 634-639, 1988.
[25]A. Belkhir, “A comparative study of silver diffusion in a glass substrate for optical waveguide applications,” IEEE J. Quantum Electron., Vol. 35, pp. 306-311, 1999.
[26]S. I. Najafi, P. G. Suchoski, and R. V. Ramaswamy, “Silver film-diffused glass waveguides: diffusion process and optical properties,” IEEE J. Quantum Electron., Vol. QE-22, pp. 2213-2218, 1986.
[27]A. Tervonen, S. Honkanen, and M. Leppihalme, “Control of ion-exchanged waveguide profiles with Ag thin-film sources,” J. Appl. Phys., Vol. 62, pp. 759-763, 1987.
[28]C. C. Lee and R. W. Chuang, “A dry electromigration process for fabricating deep optical channel,” Materials Science and Engineering, Vol. 111, pp. 40-48, 2004.
Chapter 3
[1]Y. H. Won, P. C. Jaussaud, and G. H. Chartier, “Three-Prism Loss Measurement of Optical Waveguides,” Appl. Phys. Lett., Vol. 37, No. 3, pp. 269-271, 1980.
[2]R. G. Hunsperger, Integrated Optics. Berlin: Springer-Verlag, 1984.
[3]R. G. Walker, “Simple and Accurate Loss Measurement Technique for Semiconductor Optical Waveguides,” Electron. Lett., Vol. 21, No. 13, pp. 581-583, 1985.
[4]Y. Okamura, A. Miki, and S. Yamamoto, “Observation of Wave Propagation in Integrated Optical Circuits,” Appl. Opt., Vol. 25, No. 19, pp. 3405-3408, 1986.
[5]R. Ulrich and R. Torge, “Measurement of Thin Film Parameters with a Prism Coupler,” Applied Optics, Vol. 12, pp. 2901-2908, 1973.
[6]S. I. Najafi, Introduction to Glass Integrated Optics. Boston: Artech House, 1992.
[7]R. G. Hunsperger, Integrated Optics: Theory and Technology. Berlin: Springer, 2002.
[8]J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Optics Express, Vol. 15, pp. 2370-2314, 2007.
[9]J. M. White and P. F. Heidrich, “Optical waveguide Refractive Index Profiles from Measurement of Mode Indices: A Simple Analysis,” Appl. Opt., Vol. 15, No. 1, pp. 151-155, 1976.
[10]P. Hertel and H. P. Menzler, “Improved Inverse WKB Procedure to Reconstruct Refractive Index Profiles of Dielectric Planar Waveguides,” Appl. Phys., Vol. 15, pp. 75-80, 1980.
Chapter 4
[1]J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt., Vol. 15, No. 1, pp. 151-155, 1976.
[2]D. Lee, Electromagnetic Principles of Integrated Optics. New York: Wiley, 1986.
[3]K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol., Vol. 3, pp. 385-391, 1985.
[4]S. I. Najafi, Introduction to Glass Integrated Optics. Boston: Artech House, 1992.
[5]J. E. Gortych and D. G. Hall, “Fabrication of Planar Optical Waveguides by K+-Ion Exchange in BK7 and Pyrex Glass,” IEEE J. Quantum Electron., Vol. 22, No. 6, 1986.
[6]G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, and R. M. Delarue, “Planar optical waveguides formed by silver migration in glass,” IEEE J. Quantum Electron., Vol. 13, pp. 192-200, 1977.
[7]R. Rogozinski, “Investigation of birefringence in planar waveguides produced by ion exchange K+-Na+ in glass BK-7,” Proceedings of the SPIE, Vol. 5576, pp. 213-218, 2004.
Chapter 5
[1]F. Ladouceur and P. Labeye, “A New General Approach to Optical Waveguide Path Design,” IEEE Journal of Lightwave technology, Vol. 13, No. 3, pp. 481-492, 1995.
[2]M. K. Smit, E. C. K. Pennings, and H. Blok, “A Normalized Approach to the Design of Low-Loss Optical Waveguide Bends,” IEEE Journal of Lightwave technology, Vol. 11, No. 11, pp. 1737-1742, 1993.
[3]C. F. Kane and R. R. Krchnavek, “Benzocyclobutene Optical Waveguides,” IEEE Photonics Technology Lett., Vol. 7, No. 5, pp. 535-537, 1995.
[4]R. W. Chuang and Z. L. Liao, “2×2 Thermo-Optic Silicon Oxynitride Optical Switch Based on the Integrated Multimode Interference Waveguides,” J. Electrochem. Soc., Vol. 157, pp. 149-152, 2010.
Chapter 6
[1]D. Khalil, H. Maty, A. Bashir, and B. Sadany, “The effect of shutter thickness on opto-mechanical variable optical attenuators,” Microw. Opt. Technol. Lett., Vol. 36, No. 2, pp. 110-112, 2003.
[2]Q. Li, A. A. Au, C. H. Lin, E. R. Lyons, and H. P. Lee, “An efficient all-fiber variable optical attenuator via acoustooptic mode coupling,” IEEE Photon. Technol. Lett., Vol. 14, No. 11, pp. 1563-1565, 2002.
[3]W. Noell, C. Marxer, and H. P. Herzig, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Topics Quantum Electron., Vol. 8, No. 1, pp. 148-145, 2002.
[4]Y. O. Noh, M. S. Yang, Y. H. Won, and W. Y. Hwang, “PLC-type variable optical attenuator operated at low electrical power,” Electron. Lett., Vol. 36, No. 24, pp. 2032-2033, 2000.
[5]S. M. Garner and S. Caracci, “Variable optical attenuator for large-scale integration,” IEEE Photon. Technol. Lett., Vol. 14, No. 11, pp. 1560-1562, 2002.
[6]L. Yang, Y. Liu, Y. Cheng, W. Wang, and Q. Wang, “Multimode interference type thermo-optic variable optical attenuator with a response frequency of 10 kHz,” Opt. Eng., Vol. 42, No. 3, pp. 606-607, 2003.
[7]H. Uetsuka, T. Hasegawa, M. Ohkawa, S. Takasugi, N. Kitano, and K. Tanaka, “Variable optical attenuator combined with an arrayed waveguide grating filter for next-generation WDM system,” Hitachi Cable Rev., Vol. 20, pp. 15-18, 2001.
[8]T. Hurvitz, S. Ruschin, D. Brooks, G. Hurvitz, and E. Arad, “Variable Optical Attenuator Based on Ion-Exchange Technology in Glass,” J. Lightwave Technol., Vol. 23, No. 5, pp. 1918-1922, 2005.
[9]B. Hermansson, D. Yevick, and P. Danielsen, “Propagation beam analysis of multimode waveguide tapers,” IEEE J. Quantum Electron., Vol. 19, pp. 1246-1251, 1983.
Chapter 7
[1]X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photonics Technol. Lett., Vol. 17, pp. 2361-2363, 2005.
[2]F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett., Vol. 18, pp. 421-423, 2006.
[3]C. Y. Wu, P. Lin, R. S. Huang, W. C. Chao, and M. M. H. Lee, “Design optimization for micromachined low power Mach-Zehnder thermo-optic switch,” Appl. Phys. Lett., Vol. 89, pp. 121121-121123, 2006.
[4]Abdulaziz M. Al-Hetar, Abu Sahmah M. Supa’at, A. B. Mohammad, and I. Yulianti, “Crosstalk improvement of a thermo-optic polymer waveguide MZI-MMI switch,” Optics Commun., Vol. 281, pp. 5764-5767, 2008.