研究生: |
楊子寬 Yang, Tz-Kuan |
---|---|
論文名稱: |
利用溶膠凝膠法製備TiO2-Al2O3粉末
及對TiO2光催化效果影響之研究 Synthesis of TiO2-Al2O3 powders by sol-gel method and study of the photocatalytic activity of supported TiO2 |
指導教授: |
黃紀嚴
Huang, Chi-Yen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 二氧化鈦 、觸媒 |
外文關鍵詞: | catalyst, TiO2 |
相關次數: | 點閱:69 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化鈦為業界最常使用之觸媒之ㄧ,不論是在加氫脫硫之觸媒基底或是做為去除有害有機物質之光觸媒等用途中,都佔有極大之重要性,而隨著國內油價的上漲以及環保意識之抬頭,越來越多的研究團體也都開始對二氧化鈦產生高度之興趣與期望,但是二氧化鈦卻有著低比表面積與熱穩定不佳之缺點,使得二氧化鈦在發展上大大地打了個折扣,如何改善其缺點則為現今專家學者們研究的重點之一。
本次研究利用溶膠凝膠法來製備 TiO2-Al2O3複合粉末觸媒,因為α相氧化鋁具有高比表面積以及熱性質穩定之優點,藉由異質成長之理論,不僅可以降低生成之二氧化鈦粒子大小,以提高二氧化鈦之活性,並且利用複合粉末也可達到改善二氧化鈦低比表面積及熱穩不佳之目的。
本研究將所得之複合粉末利用 XRD、BET等儀器分析推測其為一核為氧化鋁,微小之二氧化鈦粒子則均勻地披覆在氧化鋁表面之上,並且利用 TEM等照片驗證,確定了 TiO2-Al2O3複合粉末的存在,並且推測其二氧化鈦與氧化鋁接合之情形,在亞甲基藍光催化測試中, TiO2-Al2O3複合粉末具有約兩倍之二氧化鈦粉末之光催化效果,其原因為複合粉末確實可以壓抑二氧化鈦粒子之成長,並且提高其接觸面積,因而提高了二氧化鈦之光催化之效能。
TiO2 has been used in industrial as white pigments、photocatalysis for industrial
wastewater developments , and catalysts for hydridesulfurization(HDS) of gas oil. In order to meet very stringent environ-mental
regulations, investigators begin to have high interest in TiO2. Recent researches show that a further increase in the activity of TiO2 , one will have to overcome the deficiencies related to the low surface area of TiO2.
In this study, α-Al2O3 is regarded as substrate, and the TiO2 was loaded on a unique α-alumina using TiO2 sols, which was prepared by sol-gel method using tetraisopropyl titanate (abbreviated as TPT) as precursor to form the smaller TiO2 coated on α-Al2O3 by heterogeneous growth.
The TiO2 coated α-Al2O3 powder is characterizes by XRD、BET and TEM methods for physical properties, and the samples were employed as catalysts for methylene blue (MB)photocatalytic degradation in aqueous suspension to examine the photocatalytic activity of TiO2/α-Al2O3.
The TiO2 coated α-Al2O3 is observed that the crystallite size of TiO2 is smaller than bare TiO2 (10nm and 30nm in 600℃)and surface area increase from 12 m2/g to 38 m2/g , and this result is also verified via the TEM photograph. Furthermore, The TiO2 coated α-Al2O3 was shown higher photoactivity for the photodegradation of MB dyestuff in aqueous solution under UV irradiation. As a result of comparing to the bare TiO2 prepared in parallel, is attributed to the dispersion effect of α-alumina that supported TiO2 were mainly anatase of smaller crystallite size and the increased surface area than bare TiO2. We demonstrate that TiO2 coated α-Al2O3 makes the TiO2 particles disperse more efficiently on α-Al2O3 without forming precipitates.
1. 行政院環保署,“環境白皮書”,2001。
2. Youssef Saih, and Kohichi Segawa, “Tailoring of alumina surfaces as
supports for NiMo sulfide catalysts in the ultra deep hydrodesulfurization
of gas oil : case study of TiO2-coated alumina prepared by chemical vapor
deposition technique,” Catal. Today, 86, pp61-72, 2003.
3. K. Y. S. Ng, and E. Gulari, “Molybdena on titania:I. Preparation and
characterization by raman and fourier transform infrared spectroscopy,” J.
Catal., 92, pp340-354, 1985.
4. K. Y. S. Ng, and E. Gulari, “Molybdena on titania : II. Thiophene
hydrodesulfurization activity and selectivity,” J. Catal., 95, pp33-40,
1985.
5. E. A. Barringer and H. K. Bowen, “Formation, packing and sintering of
monodisperse TiO2 powsers,” J. Amer. Ceram. Soe.,65, C-199, 1982.
6. 林敬二主編,“化學大辭典”,高立圖書公司出版,pp64。
7. 黃怡禎,“礦物學”,地球科學文教基金會,第11章,2000。
8. I. Bedjat, and P. V. Kamat, “Capped semiconductor colloids. synthesis and
photoelectrochemical behavior of TiO2 -capped SnO2 nanocrystallites,” J.
Phys. Chem., 99, pp9182-9188, 2005.
9. A. Giraudeau, F. –R. F. Fan, and A. J. Bard, “Semiconductor electrodes.
30. spectral sensitization of the semiconductors n-TiO2 and n-WO3 with
metal Phthalocyanines,” J. Amer. Ceram. Soe., 16, pp102,1980.
10. R. W. Fessenden, and P. V. Kamat, “Rate constants for charge Injection
from excited sensitizer into SnO2, ZnO, and Ti02 semiconductor
nanocrystallites,” J.Phys.Chem., 99, pp12902-12906, 1995.
11. P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, and
D. Laub, “Photocatalytic synthesis of silver nanoparticles stabilized by
TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar
solution ,” J. Amer. Ceram. Soe., 126, pp3868-3879, 2004.
12. D. Robert, A. Piscopo, and J. -V Weber, “First approach of the selective
treatment of water by heterogeneous photocatalysis,” Environmental
Chemistry Letter, 2, pp5-8, 2004.
13. M.Gratzel, N. Serpone, and E. Ed. Pelizzetti “Colloidal semiconductor-in
photocatalysis,” John Wiley & Sons. New York, 1989.
14. Andrew Mill, and Stephen Le Hunte, “An overview of semiconductor
photocatalysis,” J.Photochem. and Photobio. A, 108, pp1-35,1997.
15. 中山千秋, “光觸媒評價法標準化”, 工業材料2002年7月號,vol.50,No.7,
2002。
16. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, “Environmental
applications of semiconductor photocatalysis,” Chem. Rev., 95, pp69-96,
1995.
17. I. Willner, “ Photoswitchable biomaterials- En route to optobioelectronic
systems,” Acc. Chem. Res., 30, pp347-356, 1997.
18. Yiming Xu, Wei Zheng, Weiping Liu, “Enhanced photocatalytic activity of
supported TiO2: dispersing effect of SiO2,” J.Photochem. and Photobio.
A., 122, pp57-60, 1999.
19. Amy L. Linsebigler, Guangquan Lu, John T. Yates, and Jr., “Photocatalysis
on TiO2 surface:principles, mechanisms, and selected results,” Chem.
Rev., 95, pp735-758, 1995.
20. K. M. Reddy, S. V. Manorama, A. R. Reddy, “Band gap studies on anatase
titanium dioxide nanoparticles,” Mater. Chem. and Phys., 78, pp239–245,
2002.
21. K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras,
“Synthesis and structure of nanocrystalline TiO2 with lower band gap
showing high photocatalytic activity,” Langmuir , 20, pp2900-2907, 2004.
22. Hung, C. H., and Marinas, B. J., “Role of chlorine and oxygen in the
photocatalytic degradation of trichloroethylene vapor on TiO2 films,”
Environ.Sci.Technol., 31:2, pp562-568, 1997.
23. E. Hosono, S. Fujihara, K Kakiuchi, H. Imai, “Growth of submicrometer-
scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3
solutions under hydrothermal conditions,” J. Amer. Ceram. Soe., 126, pp
7790-7791, 2004.
24. Kang-Jin Kim, Kurt D. Benkstein, Jao van de Lagemaat, and Arthur J.Frank,
“Characteristics of low-temperature annealed TiO2 films deposited by
precipitation from hydrolyzed TiCl4 solutions,” Chem. Mater., 14, pp1042-
1047, 2002.
25. 曹茂盛、關長斌、徐甲強編著,奈米材料導論。
26. R.S. Sonawane, S.G. Hegde, M.K. Dongare, “Preparation of titanium(IV)
oxide thin film photocatalyst by sol–gel dip coating,” Mater. Chem. and
Phys., 77, pp744–750, 2002.
27. N. Kaliwoh, Jun-Ying Zhang, and I. W Boyd, “Titanium dioxide films
prepared by photo-induced sol-gel processing using 172 nm excimer lamps,”
Surface Coatings Technolog , 125, pp424-427, 2000.
28. R. Aelion, and A. Loebel, F. Eirich, “Hydrolysis of ethyl silicate,” J.
Am. Chem. Sci., 72, pp5705, 1950.
29. C. Morterra, “An infrared spectroscopic study of anatase properties,” J.
Chem. soc. Faraday Trans.I, 84(5), 1617-1637, 1988.
30. Heung Yong Ha, and Marc A. Anderson., “Photocatalytic degration of formic
acidvia metal-supported titania,”J. Environ. Engin., 122, pp217-221, 1996.
31. Maria Zaharescu, Maria Crisan, D. Crisan, N. Dragan, A. Jitianu, and Maria
Preda, “Al2TiO5 preparation starting with reactive powders obtained by
sol-gel method,” J. European Ceram. Soc., 18, pp1257-1264, 1998.
32. Kingery. B.U., “陶瓷材料概論上冊”, 曉園出版社,pp317,1991。
33. M. Sanchez-agudo, L. Soriano, C. Quiros, J. Avila, J.M. Sanz, “Electronic
interaction at the TiO2-Al2O3 interface as observed by X-ray absorption
spectroscopy”, Sur. Sci., 482-485, pp470-475, 2001.
34. 許樹恩,吳泰伯,“X光繞社原理與材料結構分析”,中國材料科學學會,pp422,
1996。
35. Hiromichi Okamura, Eric A. Barringer, H. Kent Bowen, “Preparation and
sintering of narrow-sized AI203-TiO2 composite powders”, J. Mater. Sci..
24, pp1867-1880, 1989.