簡易檢索 / 詳目顯示

研究生: 楊子寬
Yang, Tz-Kuan
論文名稱: 利用溶膠凝膠法製備TiO2-Al2O3粉末 及對TiO2光催化效果影響之研究
Synthesis of TiO2-Al2O3 powders by sol-gel method and study of the photocatalytic activity of supported TiO2
指導教授: 黃紀嚴
Huang, Chi-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 60
中文關鍵詞: 二氧化鈦觸媒
外文關鍵詞: catalyst, TiO2
相關次數: 點閱:69下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈦為業界最常使用之觸媒之ㄧ,不論是在加氫脫硫之觸媒基底或是做為去除有害有機物質之光觸媒等用途中,都佔有極大之重要性,而隨著國內油價的上漲以及環保意識之抬頭,越來越多的研究團體也都開始對二氧化鈦產生高度之興趣與期望,但是二氧化鈦卻有著低比表面積與熱穩定不佳之缺點,使得二氧化鈦在發展上大大地打了個折扣,如何改善其缺點則為現今專家學者們研究的重點之一。

    本次研究利用溶膠凝膠法來製備 TiO2-Al2O3複合粉末觸媒,因為α相氧化鋁具有高比表面積以及熱性質穩定之優點,藉由異質成長之理論,不僅可以降低生成之二氧化鈦粒子大小,以提高二氧化鈦之活性,並且利用複合粉末也可達到改善二氧化鈦低比表面積及熱穩不佳之目的。

    本研究將所得之複合粉末利用 XRD、BET等儀器分析推測其為一核為氧化鋁,微小之二氧化鈦粒子則均勻地披覆在氧化鋁表面之上,並且利用 TEM等照片驗證,確定了 TiO2-Al2O3複合粉末的存在,並且推測其二氧化鈦與氧化鋁接合之情形,在亞甲基藍光催化測試中, TiO2-Al2O3複合粉末具有約兩倍之二氧化鈦粉末之光催化效果,其原因為複合粉末確實可以壓抑二氧化鈦粒子之成長,並且提高其接觸面積,因而提高了二氧化鈦之光催化之效能。

    TiO2 has been used in industrial as white pigments、photocatalysis for industrial
    wastewater developments , and catalysts for hydridesulfurization(HDS) of gas oil. In order to meet very stringent environ-mental
    regulations, investigators begin to have high interest in TiO2. Recent researches show that a further increase in the activity of TiO2 , one will have to overcome the deficiencies related to the low surface area of TiO2.
    In this study, α-Al2O3 is regarded as substrate, and the TiO2 was loaded on a unique α-alumina using TiO2 sols, which was prepared by sol-gel method using tetraisopropyl titanate (abbreviated as TPT) as precursor to form the smaller TiO2 coated on α-Al2O3 by heterogeneous growth.
    The TiO2 coated α-Al2O3 powder is characterizes by XRD、BET and TEM methods for physical properties, and the samples were employed as catalysts for methylene blue (MB)photocatalytic degradation in aqueous suspension to examine the photocatalytic activity of TiO2/α-Al2O3.
    The TiO2 coated α-Al2O3 is observed that the crystallite size of TiO2 is smaller than bare TiO2 (10nm and 30nm in 600℃)and surface area increase from 12 m2/g to 38 m2/g , and this result is also verified via the TEM photograph. Furthermore, The TiO2 coated α-Al2O3 was shown higher photoactivity for the photodegradation of MB dyestuff in aqueous solution under UV irradiation. As a result of comparing to the bare TiO2 prepared in parallel, is attributed to the dispersion effect of α-alumina that supported TiO2 were mainly anatase of smaller crystallite size and the increased surface area than bare TiO2. We demonstrate that TiO2 coated α-Al2O3 makes the TiO2 particles disperse more efficiently on α-Al2O3 without forming precipitates.

    總目錄 摘要........................................................................I Abstract...................................................................II 致謝......................................................................III 總目錄.....................................................................IV 表目錄.....................................................................VI 圖目錄....................................................................VII 第一章 緒論.................................................................1 1-1 前言.................................................................1 1-2 研究目的.............................................................3 第二章 基礎理論.............................................................4 2-1 α-氧化鋁簡介.........................................................4 2-1-1 α-氧化鋁結構.........................................................4 2-1-2 α-氧化鋁的表面特性...................................................5 2-2 二氧化鈦簡介.........................................................7 2-2-1 二氧化鈦結構.........................................................7 2-2-2 光催化機制...........................................................9 2-2-3 二氧化鈦光催化機制..................................................10 2-3 溶膠凝膠(sol-gel)法及鍵結模式.....................................14 2-3-1 二氧化鈦製備法......................................................14 2-3-2 溶膠凝膠法..........................................................16 2-3-3 影響溶膠凝膠法之因素................................................17 2-3-4 複合粉末鍵結模式....................................................19 第三章 實驗方式與步驟......................................................20 3-1 實驗藥品............................................................20 3-2 實驗方式及流程......................................................20 3-2-1 實驗方式簡述........................................................20 3-2-2 起始膠體製備........................................................21 3-2-3 熱處理條件..........................................................22 3-2-4 TiO2(TPT)及球磨混合粉末製備.......................................22 3-3 性質分析............................................................24 第四章 結果與討論..........................................................30 4-1 物理性質分析........................................................31 4-1-1 熱行為分析..........................................................31 4-1-2 結晶相鑑定以及粉末結晶晶徑分析......................................32 4-1-3 粉末表面鍵結分析....................................................32 4-1-4 粉末型態與微結構觀察 ...............................................40 4-2 光催化效能測試......................................................49 4-2-1 ST系列之光催化效能..................................................49 4-2-2 STA系列與ST系列之光催化效能比較.....................................51 第五章 結論與建議..........................................................56 參考文獻...................................................................57 表目錄 Table 1-1 The standard and implementation date of the low sulfur diesel fuel.........................................1 Table 2-1 The character of TiO2..............................................7 Table 2-2 Comparison of various TiO2 catalyst preparation...................16 Table 3-1 Materials used in thisstudy................20 Table 3-2 The property of Methylene Blue....................................27 Table 4-1 Results of BET analysis of α-Al2O3 and STA system.................45 Table 4-2 The EDS data of STA450............................................48 圖目錄 Fig 2-1 The diagram of α-Al2O3 structure of a1、a2 axles.....................5 Fig 2-2 The diagram of α-Al2O3 structure of ac axles.........................5 Fig 2-3 Screen effect of surface energy......................................6 Fig 2-4 Al-OH groups on the surface of α-Al2O3...............................6 Fig 2-5 The phase diagram of TiO2............................................8 Fig 2-6 TiO2 structure (a):anatase (b):rutile..............................8 Fig 2-7 The energy gap diagram of semiconductor.............................10 Fig 2-8 Photocatalysis mechanism of TiO2....................................13 Fig 3-1 Diagram of sol-gel process for TiO2-Al2O3...........................21 Fig 3-2 The flow chart of sol-gel method....................................23 Fig 3-3 The flow chart of ball-mix method...................................23 Fig 3-4 The photochemical reactor...........................................26 Fig 3-5 The standard line of Methylene Blue and absorbance..................27 Fig 3-6 Process for qualitative analysis....................................29 Fig 4-1 The DTA of STA450 with a heating rate of 10℃/min in air............34 Fig 4-2 The DTA of STA450 with a heating rate of 3℃/min in air.............34 Fig 4-3 The TG of STA450 with a heating rate of 3℃/min in air..............35 Fig 4-4 The DTA of STA450 and ST450 with a heating rate of 10℃/min in air..35 Fig 4-5 The XRD pattern of STA450...........................................36 Fig 4-6 The XRD pattern of ST system........................................36 Fig 4-7 The XRD pattern of STA system.......................................37 Fig 4-8 The XRD pattern of TiO2(P25) and TiO2(a)............................37 Fig 4-9 The crystallite size of STA、ST system by calined temp..............38 Fig 4-10 The crystallite size of STA450 system by heating rate..............38 Fig 4-11 TiO2-Al2O3 stable equilibrium phase diagram........................39 Fig 4-12 The FT-IR diagram of α-Al2O3、STA450、BTA450.......................44 Fig 4-13 The PSD diagram of α-Al2O3........................................44 Fig 4-14 The PSD diagram of ST450...........................................44 Fig 4-15 The PSD diagram of STA450..........................................45 Fig 4-16 The PSD diagram of STA500..........................................45 Fig 4-17 The SEM image of α-Al2O3.........................................46 Fig 4-18 The SEM image of ST450.............................................46 Fig 4-19 The SEM image of ST500.............................................46 Fig 4-20 The SEM image of ST600.............................................46 Fig 4-21 The SEM image of STA450............................................46 Fig 4-22 The SEM image of STA500............................................47 Fig 4-23 The SEM image of STA600............................................47 Fig 4-24 The TEM image of STA450............................................47 Fig 4-25 The TEM(EDS) image of STA450.......................................48 Fig 4-26 The photolysis test of ST450 and STA450............................52 Fig 4-27 The photolysis test of ST500 and STA500............................52 Fig 4-28 The photolysis test of ST600 and STA600............................53 Fig 4-29 The photolysis test of STA450 by heating rate......................53 Fig 4-30 The decomposition of MB (7h) of ST system..........................54 Fig 4-31 The decomposition of MB (7h) of STA system.........................54 Fig 4-32 The decomposition of MB (7h) of STA and ST system..................55

    1. 行政院環保署,“環境白皮書”,2001。

    2. Youssef Saih, and Kohichi Segawa, “Tailoring of alumina surfaces as
    supports for NiMo sulfide catalysts in the ultra deep hydrodesulfurization
    of gas oil : case study of TiO2-coated alumina prepared by chemical vapor
    deposition technique,” Catal. Today, 86, pp61-72, 2003.

    3. K. Y. S. Ng, and E. Gulari, “Molybdena on titania:I. Preparation and
    characterization by raman and fourier transform infrared spectroscopy,” J.
    Catal., 92, pp340-354, 1985.

    4. K. Y. S. Ng, and E. Gulari, “Molybdena on titania : II. Thiophene
    hydrodesulfurization activity and selectivity,” J. Catal., 95, pp33-40,
    1985.

    5. E. A. Barringer and H. K. Bowen, “Formation, packing and sintering of
    monodisperse TiO2 powsers,” J. Amer. Ceram. Soe.,65, C-199, 1982.

    6. 林敬二主編,“化學大辭典”,高立圖書公司出版,pp64。

    7. 黃怡禎,“礦物學”,地球科學文教基金會,第11章,2000。

    8. I. Bedjat, and P. V. Kamat, “Capped semiconductor colloids. synthesis and
    photoelectrochemical behavior of TiO2 -capped SnO2 nanocrystallites,” J.
    Phys. Chem., 99, pp9182-9188, 2005.

    9. A. Giraudeau, F. –R. F. Fan, and A. J. Bard, “Semiconductor electrodes.
    30. spectral sensitization of the semiconductors n-TiO2 and n-WO3 with
    metal Phthalocyanines,” J. Amer. Ceram. Soe., 16, pp102,1980.

    10. R. W. Fessenden, and P. V. Kamat, “Rate constants for charge Injection
    from excited sensitizer into SnO2, ZnO, and Ti02 semiconductor
    nanocrystallites,” J.Phys.Chem., 99, pp12902-12906, 1995.

    11. P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, and
    D. Laub, “Photocatalytic synthesis of silver nanoparticles stabilized by
    TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar
    solution ,” J. Amer. Ceram. Soe., 126, pp3868-3879, 2004.

    12. D. Robert, A. Piscopo, and J. -V Weber, “First approach of the selective
    treatment of water by heterogeneous photocatalysis,” Environmental
    Chemistry Letter, 2, pp5-8, 2004.

    13. M.Gratzel, N. Serpone, and E. Ed. Pelizzetti “Colloidal semiconductor-in
    photocatalysis,” John Wiley & Sons. New York, 1989.

    14. Andrew Mill, and Stephen Le Hunte, “An overview of semiconductor
    photocatalysis,” J.Photochem. and Photobio. A, 108, pp1-35,1997.

    15. 中山千秋, “光觸媒評價法標準化”, 工業材料2002年7月號,vol.50,No.7,
    2002。

    16. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, “Environmental
    applications of semiconductor photocatalysis,” Chem. Rev., 95, pp69-96,
    1995.

    17. I. Willner, “ Photoswitchable biomaterials- En route to optobioelectronic
    systems,” Acc. Chem. Res., 30, pp347-356, 1997.

    18. Yiming Xu, Wei Zheng, Weiping Liu, “Enhanced photocatalytic activity of
    supported TiO2: dispersing effect of SiO2,” J.Photochem. and Photobio.
    A., 122, pp57-60, 1999.

    19. Amy L. Linsebigler, Guangquan Lu, John T. Yates, and Jr., “Photocatalysis
    on TiO2 surface:principles, mechanisms, and selected results,” Chem.
    Rev., 95, pp735-758, 1995.

    20. K. M. Reddy, S. V. Manorama, A. R. Reddy, “Band gap studies on anatase
    titanium dioxide nanoparticles,” Mater. Chem. and Phys., 78, pp239–245,
    2002.

    21. K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras,
    “Synthesis and structure of nanocrystalline TiO2 with lower band gap
    showing high photocatalytic activity,” Langmuir , 20, pp2900-2907, 2004.

    22. Hung, C. H., and Marinas, B. J., “Role of chlorine and oxygen in the
    photocatalytic degradation of trichloroethylene vapor on TiO2 films,”
    Environ.Sci.Technol., 31:2, pp562-568, 1997.

    23. E. Hosono, S. Fujihara, K Kakiuchi, H. Imai, “Growth of submicrometer-
    scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3
    solutions under hydrothermal conditions,” J. Amer. Ceram. Soe., 126, pp
    7790-7791, 2004.

    24. Kang-Jin Kim, Kurt D. Benkstein, Jao van de Lagemaat, and Arthur J.Frank,
    “Characteristics of low-temperature annealed TiO2 films deposited by
    precipitation from hydrolyzed TiCl4 solutions,” Chem. Mater., 14, pp1042-
    1047, 2002.

    25. 曹茂盛、關長斌、徐甲強編著,奈米材料導論。

    26. R.S. Sonawane, S.G. Hegde, M.K. Dongare, “Preparation of titanium(IV)
    oxide thin film photocatalyst by sol–gel dip coating,” Mater. Chem. and
    Phys., 77, pp744–750, 2002.

    27. N. Kaliwoh, Jun-Ying Zhang, and I. W Boyd, “Titanium dioxide films
    prepared by photo-induced sol-gel processing using 172 nm excimer lamps,”
    Surface Coatings Technolog , 125, pp424-427, 2000.

    28. R. Aelion, and A. Loebel, F. Eirich, “Hydrolysis of ethyl silicate,” J.
    Am. Chem. Sci., 72, pp5705, 1950.

    29. C. Morterra, “An infrared spectroscopic study of anatase properties,” J.
    Chem. soc. Faraday Trans.I, 84(5), 1617-1637, 1988.

    30. Heung Yong Ha, and Marc A. Anderson., “Photocatalytic degration of formic
    acidvia metal-supported titania,”J. Environ. Engin., 122, pp217-221, 1996.

    31. Maria Zaharescu, Maria Crisan, D. Crisan, N. Dragan, A. Jitianu, and Maria
    Preda, “Al2TiO5 preparation starting with reactive powders obtained by
    sol-gel method,” J. European Ceram. Soc., 18, pp1257-1264, 1998.

    32. Kingery. B.U., “陶瓷材料概論上冊”, 曉園出版社,pp317,1991。

    33. M. Sanchez-agudo, L. Soriano, C. Quiros, J. Avila, J.M. Sanz, “Electronic
    interaction at the TiO2-Al2O3 interface as observed by X-ray absorption
    spectroscopy”, Sur. Sci., 482-485, pp470-475, 2001.

    34. 許樹恩,吳泰伯,“X光繞社原理與材料結構分析”,中國材料科學學會,pp422,
    1996。

    35. Hiromichi Okamura, Eric A. Barringer, H. Kent Bowen, “Preparation and
    sintering of narrow-sized AI203-TiO2 composite powders”, J. Mater. Sci..
    24, pp1867-1880, 1989.

    下載圖示 校內:2007-08-24公開
    校外:2007-08-24公開
    QR CODE