簡易檢索 / 詳目顯示

研究生: 黄世兄
Huynh, Hoang The
論文名稱: PACE奈米級衛星姿態判定與控制系統之實現
Implementation of Attitude Determination and Control System into PACE Nanosatellite
指導教授: 苗君易
Miau, Jiun-Jih
共同指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 92
外文關鍵詞: PACE, ADCS, Implementation, SIL, PIL
相關次數: 點閱:95下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文描述微衛星PACE之姿態判定與控制系統的實現。PACE衛星是國立成功大學開發的2U立方衛星,重量小於兩公斤,體積為100 mm x 100 mm x 227 mm。PACE衛星有兩個主要的任務,分別為進行姿態控制的實驗與驗證酬載的功能性以期能做為未來小型衛星的裝備。姿態判定與控制次系統的目標為題提供主動控制,例如減速控制、姿態判定以及姿態穩定。更重要的是PACE衛星的任務操作允許使用者上傳ADCS演算法,如此一來演算法便可在太空中被驗證。為了要驗證嵌入式ADCS飛行軟體,發展了程序迴路模擬(Processor-in-the-loop)平台,此模擬由許多模型構成,像是太空環境、軌道動態、姿態動態、感測器與制動器模型…等、這些模型都在Labview軟體裡模擬。及時控制器CompactRIO用來做為模擬器,執行Labview軟體模擬各個模型並提供即時的介面與ADCS模組連接。而所有的演算法與ADCS模組也都已實現並驗證。

    The thesis describes the implementation of an active attitude determination and control system (ADCS) for the PACE nanosatellite. PACE satellite is a 2U cubesat under developed at National Cheng Kung University (NCKU) with a mass less than 2 kg and dimension of 100 mm x 100 mm x 227 mm. Two main missions of PACE satellite are to conduct attitude control experiments and to demonstrate the technology to be used in future missions for small satellite. The ADCS sub-system aims to provide functions for active attitude control such as detumbling, determination and stabilization. More importantly, the operation of the PACE mission will allow users to upload ADCS algorithms so that the algorithm can be tested and verified in space. In order to fully verify the embedded ADCS software, a verification system and a Processor-in-the-loop (PIL) simulation are developed. The simulation models consisting of space environment, orbit dynamic, attitude dynamic, and sensor/actuator are modeled using Labview software. A CompactRIO real-time controller is adopted as a simulator to execute simulation models into Labview and also to provide real-time interface with ADCS board. For the results, algorithms and functions for ADCS software are both implemented and verified. The results are met the requirements for ADCS.

    Abstract II Acknowledgement III Contents IV List of Figures VI List of Tables X Chapter 1. Introduction 1 1.1. Background 1 1.2. PACE Nanosatellite 2 1.3. Space Segment 3 1.4. Ground Segment 7 1.5. Launch Segment 8 1.6. Hardware of ADCS Development 8 1.7. Requirements for ADCS 13 1.8. Thesis Outline 14 Chapter 2. Fundamental of ADCS 15 2.1. Euler Angles and Quaternion 15 2.2. Coordinate System 17 2.3. Equation of Motion 22 2.4. Orbit Propagator 25 2.5. The Space Environment 29 Chapter 3. The ADCS of PACE 38 3.1. Attitude Control Strategy 38 3.2. Detumbling 39 3.3. Attitude Determination 40 3.4. Attitude Control 44 3.5. Summary of Control Laws 46 3.6. ADCS Implementation 47 3.7. Simulation 48 3.8. Onboard Implementation 52 3.9. Verification 61 Chapter 4. Result 66 4.1. ADCS Software 67 4.2. Detumbling 70 4.3. Attitude Determination 73 4.4. Attitude Control 80 Chapter 5. Conclusion 87 5.1. Discussion of Results 87 5.2. Future Work 89 Appendix 90 Reference 91

    [1] J.J. Miau, J.C. Juang. A University Nano-Satellite Program: PACESAT. 5th IAA Symposium on Small Satellites for Earth Observation, Berlin, Germany, 2005.
    [2] J.J. Miau, J.C. Juang, A. Scholz. In-Orbit Testing of Attitude Control Laws on the PACE Nanosatellite Platform. 4th European CubeSat Symposium, Belgium, 2012.
    [3] A. Scholz. Technical Requirements Specification. System Engineering Document, PACE lab, 2012.
    [4] A. Scholz, J.J. Miau, J.C. Juang, C.C. Ker, B.C. Chen, H.L. Chiu, J.K. Tu. Development of Digital CMOS Sun Sensors at National Cheng Kung University. UNIVERSAT, Chung Li, Taiwan, 2007.
    [5] A. Scholz. Implementation of Advanced Determination and Control Techniques into a Nanosatellite. National Cheng Kung University, 2008.
    [6] C.C. Yen. Design, Implementation and Verification of Microsatellite Attitude Determination and Control Subsystem. National Cheng Kung University, 2011.
    [7] Y.M. Suen, Design and Simulation of a Picosatellite Attitude Control Subsystem, National Cheng Kung University, 2003.
    [8] S. Lee. CubeSat Design Specification. California Polytechnic State University, 2008.
    [9] R. Nugent, R. Munakata, A. Chin. The CubeSat: The Picosatellite Standard for Research and Education. American Institute of Aeronautics and Astronautics, 2008.
    [10] R. Wertz. Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, 1978.
    [11] M.D. Shuster, S.D. Oh. Three-Axis Attitude Determination from Vector Observations. Journal of Guidance and Control, 1981.
    [12] M.D. Shuster. The Quest for Better Attitudes. The Journal of the Astronautical Sciences, 2006.
    [13] M.D. Shuster. Journal of Guidance, Control and Dynamics. Filter QUEST or REQUEST, 2008.
    [14] Two-Line Element Sets. The Center for Space Standards & Innovation. URL: http://www.celestrak.com/NORAD/elements/.
    [15] O. Reda, A. Andreas. Solar Position Algorithm for Solar Position Algorithm for Solar Radiation Applications. NREL Report No. TP-560-34302, 2008.
    [16] P. Vinti. Orbital and Celestial Mechanics. American Institute of Aeronautics & Astronautics. 1998.
    [17] International Geomagnetic Reference Field. IAGA Division V-MOD Geomagnetic Field, 2010.
    [18] J. Miller. SUN'S UP. The Radio Amateur Satellite Corporation, 1985.
    [19] N.S. Takahashi, A.L.S.M. de Souza, M.C. Tosin. Execution Time of QUEST Algorithm in Embedded Processors. 3rd CTA-DLR Workshop on Data Analysis & Flight Control, Brazil, 2009.
    [20] C. Hall. Spacecraft Dynamics and Control. Virginia Tech, 2003.
    [21] D. Choukroun. Novel Methods for Attitude Determination Using Vector Observations. Israel Institute of Technology, 2003.
    [22] N.K. Ure, Y.B. Kaya, G. Inalhan. The development of a Software and Hardware-in-the-Loop Test System for ITU-PSAT II Nanosatellite ADCS. Aerospace Conference, IEEE, 2011.
    [23] M.J. Sidi. Spacecraft Dynamics and Control. Cambridge University Press, New York, 1997.
    [24] B. Andresen, C. GrØn, R. H. Knudsen, C. Nielsen, K.K SØrensen, D. Taagaard. Attitude Control System for AAUSAT-II. Aalborg University, Denmark, 2005.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE