簡易檢索 / 詳目顯示

研究生: 林明叡
Lin, Ming-Rui
論文名稱: 複合電極之設計與製備對無機固態鋰電池性能之研究
Design and Fabrication of Composite Cathode for Performance of Inorganic Solid-State Lithium Battery
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 68
中文關鍵詞: 鋁摻雜磷酸鋁鈦固態電解質固態電池
外文關鍵詞: Li1.3Al0.3Ti1.7(PO4)3, solid state electrolyte, solid state battery
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前市售鋰離子二次電池之電解質多採用有機溶劑,雖具有能量密度高、充放電速度快等優勢,然而其具有不穩定以及起火燃燒風險。因此為了提升電池安全性,以固態的電解質材料取代有機液態電解質,不僅能排除電池內部短路及液態電解質的洩露問題,還可以徹底解決鋰離子二次電池安全性隱患。然而,在全固態鋰電池中,電極與固體電解質之間的固相固相接觸相比固相液相接觸具有更高的界面接觸電阻,同時,其界面相容性和充放電穩定性也顯著影響全固態鋰電池的循環性能和庫倫性能。因此本研究將針對界面調控機理與修飾方法,進行新型之複合電極結構的開發,可獲得穩定結構及良好電化學性質,以實現高能量密度全固態鋰電池之可行性。
    本研究以鋁摻雜磷酸鋁鈦 ( Li1.3Al0.3Ti1.7(PO4)3;LATP )作為固態電解質材料,而正極材料分別選用磷酸鋰鐵(LiFePO4)和鈷酸鋰(LiCoO2)進行熱化學穩定性之研究,藉以製備無機固態鋰電池性能之複合電極設計。由晶體結構分析結果顯示,LATP與LiCoO2之熱化學穩定性較差,於500oC下即有Co3O4第二相的形成;另一方面,在LATP與LiFePO4具有較佳的熱化學穩定性,在不同溫度(500-700oC)下,仍維持兩相共存且無明顯之異相生成。
    本研究中當LATP/LiFePO4複合陰極比例為50 vol%:50 vol%時,可有效共燒於LATP基材上。藉由EIS量測可得知,藉由共燒溫度可有效降低介面極化阻抗,當於700oC共燒溫度時,界面極化阻值為455Ω,當三相界從電解質/電極的界面延伸到整體電極當中,提高共燒溫度可使電極燒結現象提升,進而降低界面極化阻值。由放電速率測試結果顯示,當放電速率為0.1C,可獲得140 mAh/g 之電容量,此電池之充放電循環達50圈後,其庫倫效率仍可維持95%以上。

    State-of-the-art Li ion batteries use organic liquid electrolytes. Although these batteries provide high efficiency, reliability, good cycle life, they still exhibit the safety issues regarding fire and explosion. All solid-state batteries are an emerging option for next-generation traction batteries promising low cost, high performance and high safety. However, solid state Li batteries still show some problems and challenges such as low ionic conductivity, high interface polarization, low flexibility. The problems and challenges may be overcome or suppressed through better materials design and interface engineering. Thus, in this proposed work, the main objectives will be to enhance the chemistry stability of solid electrolyte; It is expected that Li batteries with proper materials design and interface engineering will show superior high-voltage, reliability, safety feature and stacking capability for many applications.
    In this study, Li1.3Al0.3Ti1.7(PO4)3(LATP) was used as the solid electrolyte material, and the cathode materials were selected from lithium iron phosphate (LiFePO4) and lithium cobaltate (LiCoO2) for chemical stability. Testing to find the best composite electrode structure for development. The XRD results show that the chemical stability of LATP and LiCoO2 is poor, and the formation of Co3O4 second phase appears at 500oC. On the other hand, LATP and LiFePO4 have better chemical stability at temperatures up to 700oC.
    In this study, when the proportion of LATP-LiFePO4 composite cathode is 50 vol%: 50 vol%, it can be successfully sintered on the LATP substrate. The result of discharge rate testing show that 140 mAh/g when the discharge rate is 0.1C. After 50 cycles charge/discharge, its coulombic efficiency still maintain more than 95%.

    Chapter 1 Introduction ……………………………………………………......1 Chapter 2 Literature Review …………………………………………………3 2.1 Basic Concepts of Li-ion Batteries ……………………………… 3 2.2 Development of cathode materials for lithium ion battery ……….5 2.2.1 Cathode Materials with Layered Structure …………………7 2.2.2 Cathode Materials with Spinel Structure …………………...8 2.2.3 Cathode Materials with Olivine Structure ….…………..…. 9 2.3 Oxide Electrolytes for Lithium Batteries ………..…………..….11 2.3.1 NASICON-Type Electrolytes …………………..………... 13 2.3.2 Perovskite-Type Electrolytes …………..………………….15 2.3.3 Garnet-Type Electrolytes …………..……………………. .17 2.4 The Interfacial Resistance ………………………………………20 2.4.1 Gel Polymer Electrolyte Interlayer………………………...20 2.4.2 Solid Polymer Electrolyte Interlayers……………...……...24 2.4.3 Composite Cathode………………………………………..26 Chapter 3 Motivation and Objective …………………….……………….....28 Chapter 4 Experiment ……...………………………………………………..29 4.1 Precursor Powder preparation...……….……........................….29 4.1.1 Solid State Reaction……………………………………….29 4.1.2 Sol-Gel Method……………………………………………31 4.2 Basic properties and electrochemical analysis………………….33 4.2.1 Crystal Structure ………………………....……………......33 4.2.2 Morphology / Element Distribution ………………………33 4.2.3 Conductivity Measurement ……………………………….34 4.2.4 Electrochemical Impedance Spectroscopy ……………......35 4.3 Preparation of the battery and Electrochemical Characterization………………………………..35 Chapter 5: Result and Discussion…………...………..……………………...36 5.1 Influence of Basic Characteristic of Li1.3Al0.3Ti1.7(PO4)3 with Different Synthesis Method…………………………..…...…36 5.1.1 Crystal Structure of Li1.3Al0.3Ti1.7(PO4)3 ………..…..….….36 5.1.2 Morphology and Particle Size Distribution …………….…39 5.1.3 EIS Analysis …………………………………..…………..43 5.2 Chemical Stability of LATP-based Composites ……………….45 5.2.1 Effect of Heating on Material Crystal Structure ………...45 5.3 LiCoO2 and Li1.3Al0.3Ti1.7(PO4)3 Composites….…………...…..48 5.3.1 Morphology and Element Distribution…………...………48 5.3.2 Cycling test of LiCoO2 /LATP/ Li Battery ………………51 5.4 LiFePO4 and Li1.3Al0.3Ti1.7(PO4)3 composites….………………53 5.4.1 Morphology and Element Distribution…………...………53 5.4.2 Influence of Different Mixing Ratio of LATP-LiFePO4 Composite Cathode on Battery Performance ……….…..56 5.4.3 Influence of Heat Treatment Temperature on Battery Performance………………………………………..…….58 5.4.4 Performance of LiFePO4 /LATP/ Li battery …….…….....61 5.4.5 Cycling test of LiFePO4 /LATP/ Li battery …….………..62 Chapter 6: Conclusions ……………………………………………………..65 Chapter 7: References …………………………………...………………….66

    [1] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Tin-based amorphous oxide: a high-capacity lithium-ion-storage material, Science 276(5317) (1997) 1395-1397.
    [2] M. Armand, J.M. Tarascon, Building better batteries, Nature 451(7179) (2008) 652-657.
    [3] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, J Power Sources 195(9) (2010) 2419-2430.
    [4] T.H. Kim, J.S. Park, S.K. Chang, S. Choi, J.H. Ryu, H.K. Song, The Current Move of Lithium Ion Batteries Towards the Next Phase, Adv Energy Mater 2(7) (2012) 860-872.
    [5] J. Wen, Y. Yu, C. Chen, A review on lithium-ion batteries safety issues: existing problems and possible solutions, Materials express 2(3) (2012) 197-212.
    [6] D.H. Doughty, Vehicle battery safety roadmap guidance, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2012.
    [7] J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J Power Sources 195(15) (2010) 4554-4569.
    [8] S.S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries, J Power Sources 164(1) (2007) 351-364.
    [9] T.D. Hatchard, D.D. MacNeil, D.A. Stevens, L. Christensen, J.R. Dahn, Importance of heat transfer by radiation in Li-ion batteries during thermal abuse, Electrochem Solid St 3(7) (2000) 305-308.
    [10] M.A. Gee, F.C. Laman, Thermal-Stability Study of Liasf6 Electrolytes Using Accelerating Rate Calorimetry, J Electrochem Soc 140(4) (1993) L53-L55.
    [11] P.G. Balakrishnan, R. Ramesh, T.P. Kumar, Safety mechanisms in lithium-ion batteries, J Power Sources 155(2) (2006) 401-414.
    [12] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, Journal of power sources 208 (2012) 210-224.
    [13] T. Sato, T. Maruo, S. Marukane, K. Takagi, Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells, Journal of Power Sources 138(1-2) (2004) 253-261.
    [14] M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries, Energy & Environmental Science 5(7) (2012) 7854-7863.
    [15] S.P. Nadimpalli, V.A. Sethuraman, S. Dalavi, B. Lucht, M.J. Chon, V.B. Shenoy, P.R. Guduru, Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries, Journal of Power Sources 215 (2012) 145-151.
    [16] J.-M. Tarascon, A. Gozdz, C. Schmutz, F. Shokoohi, P. Warren, Performance of Bellcore's plastic rechargeable Li-ion batteries, Solid State Ionics 86 (1996) 49-54.
    [17] N.-S. Choi, I.A. Profatilova, S.-S. Kim, E.-H. Song, Thermal reactions of lithiated graphite anode in LiPF6-based electrolyte, Thermochimica Acta 480(1-2) (2008) 10-14.
    [18] E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives, Chemical Society Reviews 40(5) (2011) 2525-2540.
    [19] K. Takada, Progress and prospective of solid-state lithium batteries, Acta Materialia 61(3) (2013) 759-770.
    [20] J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high‐voltage lithium batteries, Advanced Energy Materials 5(4) (2015) 1401408.
    [21] A. Mukhopadhyay, B.W. Sheldon, Deformation and stress in electrode materials for Li-ion batteries, Progress in Materials Science 63 (2014) 58-116.
    [22] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific2011, pp. 171-179.
    [23] B. Xu, Develop high energy high power Li-ion battery cathode materials: a first principles computational study, UC San Diego, 2012.
    [24] M.Y. Son, Y.J. Hong, S.H. Choi, Y.C. Kang, Effects of ratios of Li2MnO3 and Li (Ni1/3Mn1/3Co1/3) O2 phases on the properties of composite cathode powders in spray pyrolysis, Electrochimica Acta 103 (2013) 110-118.
    [25] M. Thackeray, W. David, P. Bruce, J.B. Goodenough, Lithium insertion into manganese spinels, Materials Research Bulletin 18(4) (1983) 461-472.
    [26] J. Goodenough, M. Thackeray, W. David, P. Bruce, Lithium insertion/extraction reactions with manganese oxides, Revue de Chimie minerale 21(4) (1984) 435-455.
    [27] A. Padhi, K. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates, Journal of the Electrochemical Society 144(5) (1997) 1609-1613.
    [28] J. Zhu, Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries, UC Riverside, 2014.
    [29] Y. Ren, K. Chen, R. Chen, T. Liu, Y. Zhang, C.-W. Nan, B. Vyas, Oxide Electrolytes for Lithium Batteries, Journal of the American Ceramic Society 98(12) (2015) 3603-3623.
    [30] R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet‐type Li7La3Zr2O12, Angewandte Chemie International Edition 46(41) (2007) 7778-7781.
    [31] Y. Li, J.-T. Han, C.-A. Wang, H. Xie, J.B. Goodenough, Optimizing Li+ conductivity in a garnet framework, Journal of Materials Chemistry 22(30) (2012) 15357-15361.
    [32] Y. Harada, T. Ishigaki, H. Kawai, J. Kuwano, Lithium ion conductivity of polycrystalline perovskite La0. 67− xLi3xTiO3 with ordered and disordered arrangements of the A-site ions, Solid State Ionics 108(1-4) (1998) 407-413.
    [33] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G.y. Adachi, Ionic conductivity of solid electrolytes based on lithium titanium phosphate, Journal of the electrochemical society 137(4) (1990) 1023-1027.
    [34] S. Shiraki, T. Shirasawa, T. Suzuki, H. Kawasoko, R. Shimizu, T. Hitosugi, Atomically Well-Ordered Structure at Solid Electrolyte and Electrode Interface Reduces the Interfacial Resistance, Acs Appl Mater Inter 10(48) (2018) 41732-41737.
    [35] B.Y. Liu, Y.H. Gong, K. Fu, X.G. Han, Y.G. Yao, G. Pastel, C.P. Yang, H. Xie, E.D. Wachsman, L.B. Hu, Garnet Solid Electrolyte Protected Li-Metal Batteries, Acs Appl Mater Inter 9(22) (2017) 18809-18815.
    [36] S.-S. Chi, Y. Liu, N. Zhao, X. Guo, C.-W. Nan, L.-Z. Fan, Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries, Energy Storage Materials 17 (2019) 309-316.
    [37] W. Zhu, D. Ding, C. Xia, Enhancement in three-phase boundary of SOFC electrodes by an ion impregnation method: a modeling comparison, Electrochemical and solid-state letters 11(6) (2008) B83-B86.
    [38] Y. Yoon, J. Kim, C. Park, D. Shin, The relationship of structural and electrochemical properties of NASICON structure Li1. 3Al0. 3Ti1. 7 (PO4) 3 electrolytes by a sol-gel method, J. Ceram. Process. Res 14(4) (2013) 563-566.
    [39] A. Arico, P. Cretı, P. Antonucci, V. Antonucci, Comparison of ethanol and methanol oxidation in a liquid‐feed solid polymer electrolyte fuel cell at high temperature, Electrochemical and Solid-State Letters 1(2) (1998) 66-68.
    [40] K. Shiraishi, K. Dokko, K. Kanamura, Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis, Journal of power Sources 146(1-2) (2005) 555-558.

    下載圖示 校內:2024-08-15公開
    校外:2024-08-15公開
    QR CODE