| 研究生: |
王偉庭 Wang, Wei-Ting |
|---|---|
| 論文名稱: |
氮化鈦薄膜應用於發光二極體透明電極之研究 The Study of TiN as Transparent Contact for Visible Light Emitting Diodes |
| 指導教授: |
王永和
Wang, Yeong-Her 洪茂峰 Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 透明電極 、氮化鈦 、發光二極體 |
| 外文關鍵詞: | Transparent Contact, Light Emitting Diodes (LEDs), Titanium Nitride (TiN) |
| 相關次數: | 點閱:94 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般的AlGaInP發光二極體都是成長在n-型GaAs基板上,電流自上面流下經過p層然後至活性層以產生光,為了要得到高發光效率,p層的電流分佈非常重要。為了促進電流分佈以提高發光二極體的發光效率,一法為成長一層厚的GaP窗口層在最上面,但因為以有機金屬氣相沈積法不易成長足夠厚度且高品質之GaP窗口層,因此另一法為成長透明導電薄層,即本論文提出之氮化鈦透明導電膜。
本論文利用真空濺鍍系統在AlGaInP發光二極體上沈積氮化鈦薄膜(約50nm)來作為透明電極。同時也將氮化鈦沈積在透明基材上,以研究薄膜之光穿透率。回火前氮化鈦薄膜沈積在透明基材上於可見光範圍透光率可至60%,回火後透光率下降;回火後氮化鈦薄膜沈積於GaP上電阻率可至850μΩ-cm,較回火前電阻率為低。
氮化鈦沈積在p型磷化鎵上呈現整流特性。為了同時兼顧氮化鈦的光特性及電特性,乃嘗試先沈積一層鈦當作緩衝層以提升氮化鈦的薄膜品質。如預期的電流有明顯的增加,發光二極體的臨界電壓(在20mA時)也明顯下降。
AlGaInP light emitting diode was grown on n-GaAs substrate, the drive current was though the p-type material to active layer and generate light. A very important factor for high efficiency of the device is the current spreading effect of p-type layer. There are two methods for high efficiency LEDs to improve the current spreading effect, one is the growth of a thick lattice-matched window layer (with a bandgap higher than that of the active region) which maximizes the light extraction from the surface emitting device. An associated problem with the AlGaInP system is the difficulty of growing defect-free p-type material with sufficient thickness and a high conductivity to act as a spreading layer under the top metal contact. The other is to deposit a transparent conductor. TiN is evaluated as a potential low-cost current spreading layer (CSL); hence the device structures describe in this paper have been designed to estimate the effectiveness of TiN.
The work reported in this paper TiN was deposited on AlGaInP LED surfaces to form transparent contacts by sputtering system. In order to investigate the light transparency, TiN was deposited on transparent substrate also. The light transparency of the as-deposited TiN thin films (~50nm) by RF sputtering system was about 60% at visible region, and decreased after annealing. The resistivity of TiN deposited on GaP was 850μΩ-cm after annealing.
The TiN deposited on p-GaP exhibits rectifying properties. To look after both light output and electrical properties, we deposited a thin Ti to improve the quality of TiN. As expectancy we want the current increase obviously, and the turn-on voltage decreased obviously also.
[1] Kuo C P, Fletcher R M, Osentowski T D, Lardizabal M C, Craford M G and Robbins V M 1990 Appl. Phys. Lett. 57 2937–2939
[2] Sugawara H, Ishikawa M and Hatakoshi G “High-efficiency InGaAlP/GaAs visible light-emitting diodes” 1991 Appl. Phys. Lett. 58 1010–12.
[3] Fletcher R M, Kuo C P, Osentowski T D, Huang K H, Craford M G and Robbins V M 1991 J. Electron. Mater 20 1125–30
[4] Kish, F.A. “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes” et al 1994 Appl. Phys. Lett. 64 2839–2841
[5] Vanderwater D A, Tan I-H, Hofler G E, Defevere D C and Kish F A 1997 Proc. IEEE 85 1752–64
[6] Aliyu Y H, Morgan D V, Thomas H and Bland S W 1995 Electron. Lett. 31 2210–12
[7] Morgan D V, I M Al-Ofi and Aliyu Y H “Indium tin oxide spreading layers for AlGaInP visible LEDs” IOP Publishing Ltd 2000 67-72
[8] N. Holonyak, Jr., and S. F. Bevaqua, “Coherent (visible) lightemission from GaAsP junctions,” Appl. Phys. Lett., vol. 1, pp. 82–83, 1962.
[9] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. H¨ofler, K. G. Park, and F. M. Steranka, “Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes,”Electron. Lett., vol. 32, pp. 132–134, 1996.
[10] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-wellstructure light-emitting diodes,” Jpn. J. Appl. Phys., vol. 34, pp. L1332–L1335, 1995.
[11] A. Y. Cho, “Film deposition by molecular beam techniques,”J. Vac. Sci. Technol., vol. 8, pp. S31–S38, 1971.
[12] H. Tanaka, Y. Kawamura, S. Nojima, K. Wakita, and H. Asahi, “InGaP/InGaAlP double-heterostructure and multiquantum-well laser diodes grown by molecular beam epitaxy,” J. Appl. Phys., vol. 61, pp. 1713–1719, 1987.
[13] H. M. Manasevit, “Single crystal GaAs on insulating substrates,”Appl. Phys. Lett., vol. 12, pp. 156–159, 1968.
[14] “Recollections and reflections of MO-CVD,” J. Cryst. Growth, vol. 55, pp. 1, 1981.
[15] M. Suzuki, K. Itaya, Y. Nishikawa, H. Sugawara, and M. Okajima, “Reduction of residual oxygen incorporation and deep levels by substrate misorientation in InGaAlP alloys,” J. Cryst. Growth, vol. 133, pp. 303–308, 1993.
[16] M. Kondo, N. Okada, K. Domen, K. Sugiura, C. Anayama, and T. Tanahashi, “Origin of nonradiative recombination centers in AlGaInP grown by metalorganic vapor phase epitaxy,” J. Electron. Mater., vol. 23, pp. 355–358, 1994.
[17] R. M. Fletcher, C. P. Kuo, T. D. Osentowski, and V. M. Robbins, “Light-emitting diode with an electrically conductive window,” U.S. Patent 5 008 718, 1991.
[18] R. M. Fletcher, K.-H. Huang, C. P. Kuo, J. Yu, and T. D. Osentowski, “Light-emitting diode with a thick transparent layer,” U.S. Patent 5 233 204, 1993.
[19] J. M. Dallesasse, P. Gavrilovic, N. Holonyak, Jr., R. W. Kaliski, D. W. Nam, and E. J. Vesely, “Stability of AlAs in AlGaAs quantum well heterostructures,” Appl. Phys.Lett., vol. 56, pp. 2436–2438, 1990.
[20] J. M. Dallesasse, N. El-Zein, N. Holonyak, Jr., K. C. Hsieh, R. D. Burnham, and R. D. Dupuis, “Environmental degradation of AlGaAs quantum-well heterostructures,” J. Appl.Phys., vol. 68, pp. 2235–2238, 1990.
[21] K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, and A. S. H. Liao,“Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral regime using a thick GaP window layer,” Appl. Phys. Lett., vol. 61, pp. 1045–1047, 1992.
[22] D. B. Young, D. I. Babic, S. P. DenBaars, and L. A. Coldren, “Epitaxial AlGaAs/AlAs distributed Bragg reflectors for green (550 nm) lightwaves,” Electron. Lett., vol. 28, pp. 1873–1874, 1992.
[23] Goldbery Yu.A. Handbook Series on Semiconductor Parameters, vol.1, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, 1996, pp. 104-124.
[24] C. Y. Ting and M. Wittmer, “The Use Titanium-Based Barrier Layers in Silicon Technology,” Thin Solid Films, 96, 327 (1982).
[25] H.Joswing and W.pamler, Thin Solid Films 221 (1992) 228.
[26] K.Mitsuhashi, O,Yamazaki, K. Ohtake and M. Koba, Jpn, J Appl. Phys. 27(1998)L2041.
[27] A.J.van Roosmalen, Vacuum, Vol. 34, 1984, P29
[28] J.W.Coburn and H.F Winters, J. Vacuum Science and Technology Vol.16,1979,p.391
[29] Adam Tarniowy, Ryszard Mania, Mieczyslaw Rekas “The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films” Thin Solid Films 311(1997) 93-100
[30] V. L. Rideout, "A Review of the Theory and Technology for Ohmic Contacts to Group III-V Compound Semiconductors", Solid State Electronics, 18, 1975, pp. 541 – 550
[31] A. Piotrowska, A. Guivarc'h and G. Pelous, "Ohmic Contacts to III-V Compound Semiconductors: A Review of Fabrication Techniques", Solid State Electronics, 26(3), 1983, pp. 179 – 197
[32] J. Gyulai, J. W. Mayer, V. Rodriguez, A. Y. C. Yu and H. J. Copen, "Alloying Behaviour of Au and AuGe on GaAs", Journal of Applied Physics, 42(9), 1971, pp. 3578 – 3585
[33] F. Lnum, J. S. Johannessen, "Effect of Au:Ge Thickness on Ohmic Contacts to GaAs", Electronics Letters, 22(12), 1986, pp. 632 – 633
[34] F. Ren, A. B. Emerson, S. J. Pearton, T. R. Fullowan and J. M. Brown,"Improvement of Ohmic Contacts on GaAs with In Situ Cleaning", Applied Physics Letters, 58(10), 1991, pp. 1030 – 1032
[35] C. L. Chen, L. J. Mahoney, M. C. Finn, R. C. Brooks, A. Chu and J. G. Mavroides, "Low Resistance Pd/Ge/Au and Ge/Pd/Au Ohmic Contacts to n-type GaAs", Applied Physics Letters, 48(8), 1986, pp. 535 – 537
[36] J. T. Lai and J. Y. Lee, "Redistribution of Constituent Elements in Pd/Ge Contacts to n- type GaAs Using Rapid Thermal Annealing", Journal of Applied Physics, 76(3), 1994, pp. 1686 – 1690
[37] Klaus K. Schuegraf, “Handbook of Thin-Film Deposition Process and Techniques”, Noyes Publication 2nd ed., pp. 291, (1988)
[38] Penning, F. M, Physica, pp. 873, (1936)
[39] Penfold, A.S. and Thornton, J.A., Patents 3,884,793, (1975), 3,995,187; 4,03,996; 4,031,424 and 4,041,353; (1977)
[40] Tzong-Sheng Chang, Wen-Chun Wang, and Fon-Shan Huang, “The Study of Diffusion barrier TiNin Cu/TiN/TiSi2/Si Contact System”, VLSI Technology, Systems, and Applications, 1995. Proceedings of Technical Papers. 1995 International Symposium on, 1995 , Page(s): 185 –189
[41] B. N. Chapman, “Glow Discharge Processes:Sputtering & Plasma Etching”, John Wiley & Sons 2nd ed., New York, (1980)
[42] Uji T, Iwamoto K and Lang R 1983 IEEE Trans. Electron. Devices 30 316–20
[43] Lancaster G 1992 Introduction to Fields and Circuits (Oxford: Oxford University Pess) pp 344–6