簡易檢索 / 詳目顯示

研究生: 黃炫文
Huang, Hsuan-Wen
論文名稱: OpenFresco於鋼筋混凝土構架複合實驗之應用及驗證
Application and verification of OpenFresco for hybrid testing of a reinforced concrete frame
指導教授: 盧煉元
Lu, Lyan-Ywan
共同指導教授: 蕭輔沛
Hsiao, Fu-Pei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 254
中文關鍵詞: 複合實驗鋼筋混凝土結構集中塑性模型塑鉸振動台實驗OpenSeesOpenFrescoMTS CSICETABS
外文關鍵詞: hybrid testing, reinforced-concrete frame, concentrated plastic model, plastic hinge, shaking table test, OpenSees, OpenFresco, MTS CSIC, ETABS
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於RC結構之力學行為較為複雜,不易以有限元素軟體精確模擬其地震力作用下之結構行為,若改以振動台實驗進行測試又需花費大量的時間與金錢建立試體模型。有鑑於此,本文擬發展複合實驗技術(hybrid testing)以改善上述RC結構耐震研究方面的問題。複合實驗技術為結合數值模擬與結構試驗技術之研究方法,此技術可大幅減少實驗所需之成本,又可反應真實RC構材之複雜力學行為。而本文擬建立適合於RC結構之複合實驗平台,該平台係結合開放式有限元素軟體OpenSees (Open System for Earthquake Engineering Simulation)、中介軟體OpenFresco (Open source Framework for Experimental Setup and Control)與MTS公司所開發之實驗控制軟體MTS CSIC (Computer Simulation Interface and Configurator)。
    為了解近斷層震波對於中高樓RC建物之影響,國家地震中心台南實驗室曾進行1/2縮尺七層樓RC結構之振動台實驗,而本文擬透過所發展之複合實驗平台以該重現七層樓RC結構之振動台實驗結果。本文首先以單層鋼構架實驗確認本文複合實驗硬體設備之可行性,接著利用ETABS作為輔助,以建立七層樓RC結構之OpenSees數值模型及OpenFresco複合模型,並據以進行RC結構之複合實驗。最後再將複合實驗結果分別與數值模型模擬結果及振動台實驗結果進行比較。另外,對於實驗後已開裂之RC試體再以環氧樹脂(epoxy)進行修復,並藉由修復前後之複合實驗結果,以探討環氧樹脂對RC結構之修復成效。本文七層樓RC結構複合實驗結果顯示,其與數值模型模擬結果相當吻合,雖然現階段受限於單頻道輸出入之實驗技術,部份樓層之反應與振動台實驗結果仍有差異,不過已可部分重現振動台實驗之實驗數據,故可驗證本文複合實驗技術於大型RC結構應用上之可行性。

    Because the mechanical behavior of RC structures is relatively complicated, it is difficult to accurately simulate its seismic dynamic response using a finite element software. In view of this, this study aims to develop a hybrid testing (HT) method to mitigate the above-mentioned problems, and to establish an HT platform suitable for testing RC structures for the National Center for Research on Earthquake Engineering (NCREE). Hybrid testing is a research approach that combines numerical simulation and structural testing, The proposed platform is a combination of the open-source finite element software OpenSees (Open System for Earthquake Engineering Simulation), middle software OpenFresco (Open source Framework for Experimental Setup and Control) and experimental control software MTS CSIC (Computer Simulation Interface and Configurator).
    A shaking table test of a 1/2-scaled seven-story RC structure was conducted in the Tainan Laboratory of NCREE. This study intends to reproduce the results of the shaking table test of the seven-story RC structure through the established HT platform. In this study, the ETABS was used as an auxiliary finite-element software that helps establish the OpenSees numerical model for the seven-story RC structure, and then the OpenFresco hybrid model was built based on the OpenSees model and used to conduct the HT for the RC structure under median to extreme seismic loadings. Finally, the damaged RC specimen was repaired with epoxy after the experiment, and the seismic capacity of the epoxy-repaired RC structure was investigated by the same HT platform. The HT results of the seven-story RC structure show that it is quite consistent with the simulated results of the numerical model built by the OpenSees. It is also demonstrated that the dynamic responses of the shaking table test can be partially reproduced by the HT method, although there are some differences in the response of the certain floors. Therefore, the feasibility of the hybrid testing platform developed in this study for the application of large-scale RC structures is verified.

    摘要 I Extended Abstract II 誌謝 XV 目錄 XVI 表目錄 XX 圖目錄 XXII 第一章 前言 1 1.1 研究動機 1 1.2 文獻回顧 1 1.2.1 有關複合實驗技術發展與應用之文獻 2 1.2.2 有關RC結構複合實驗之相關文獻 4 1.2.3 有關複合實驗之中介軟體OpenFresco之相關文獻 5 1.2.4 有關有限元素軟體OpenSees之相關文獻 7 1.3 研究目的 9 1.4 本文架構 9 第二章 本文複合實驗架構及方法 10 2.1 本文複合實驗架構 10 2.2 數值分析軟體介紹-OpenSees 11 2.2.1 主要分析之架構 11 2.2.2 OpenSees非線性模型介紹 12 2.2.3 OpenSees之動力分析指令介紹 14 2.2.4 圖形介面軟體STKO介紹 15 2.3 中介軟體介紹-OpenFresco 16 2.3.1 OpenFresco之複合實驗架構 17 2.3.2 OpenFresco之主要指令介紹 17 2.3.3 以OpenSees作為數值分析軟體之OpenFresco架構 18 2.3.4 OpenFresco之積分法 19 2.4 實驗軟體介紹-MTS CSIC 19 第三章 本文複合實驗方法之驗證-以單層鋼構架為例 28 3.1 本章實驗目的 28 3.2 目標結構-單層鋼構架 28 3.3 複合實驗方法 29 3.3.1 複合實驗之架構 29 3.3.2 建立OpenFresco之複合模型 31 3.3.3 MTS CSIC參數設定 41 3.3.4 實驗設置 41 3.3.5 輸入之激振 42 3.4 虛擬複合實驗測試之說明 42 3.5 實驗結果之驗證 42 3.5.1實驗與虛擬複合實驗測試結果之比較 42 3.5.2實驗參數ramp time不同時之比較 43 3.6 小結 44 第四章 七層樓RC構架OpenSees數值模型之建立及驗證 70 4.1 本章目的 70 4.2 振動台實驗之驗證 70 4.2.1 試體描述 70 4.2.2 實驗組立與方法 71 4.2.3 實驗結果 72 4.3 ETABS數值模型與參數設定 72 4.3.1 ETABS非線性數值模型之建立 72 4.3.2非線性塑鉸-採用ASCE41-13塑鉸 75 4.3.3非線性塑鉸-採用TEASDA 1.0塑鉸 75 4.3.4數值模型之分析結果與比較 76 4.3.5數值模擬與振動台實驗結果之比較 78 4.4 OpenSees數值模型之驗證 79 4.4.1 OpenSees非線性數值模型之建立-使用STKO前處理程式 79 4.4.2非線性塑鉸-採用ModIMKPeakOriented塑鉸 82 4.4.3 OpenSees塑鉸模型與ETABS採用TEASDA 1.0塑鉸模型之分析結果比較 85 4.4.4 OpenSees分析結果與振動台實驗結果之比較 86 4.5 小結 87 第五章 七層樓RC構架複合實驗之規劃及結果 147 5.1 本章實驗目的 147 5.2 多頻道複合實驗 147 5.2.1 實驗架構與方法 147 5.2.2 OpenFresco複合模型之建立與驗證 148 5.2.3實驗設置與輸入震波 151 5.2.4多頻道複合實驗結果 152 5.3 單頻道複合實驗 155 5.3.1簡化模型之建立與驗證 155 5.3.2實驗架構與方法 156 5.3.3 OpenFresco複合簡化模型之建立與驗證 157 5.3.4實驗設置與輸入震波 157 5.3.5單頻道實驗結果與數值模型分析結果之比較 157 5.3.6單頻道實驗結果與振動台實驗結果之比較 160 5.4 小結 161 第六章 七層樓RC構架修復之複合實驗 216 6.1 本章實驗目的 216 6.2 修復方法 216 6.3 修復後OpenFresco複合模型之修正與驗證 216 6.4 複合實驗結果與數值模型分析結果之比較 217 6.5 修復前後實驗結果之比較 218 6.6 小結 219 第七章 結論與建議 242 7.1 結論 242 7.2 建議 245 參考文獻 247

    1. ASCE 41-13 (2014) “Seismic Rehabilitation of Existing Building.” American Society of Civil Engineers.
    2. Bursi O.S. and Shing P.S.B. (1996) “Evaluation of some implicit time-stepping algorithms for pseudodynamic tests.” Earthquake Engineering & Structural Dynamics. 25(4): 333-355.
    3. Bursi O. S., Abbiati G., Wu B. and Xu G. (2015) “Partitioned time integration methods for hybrid simulators” 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
    4. Chae Y., Lee J., Park M. and Kim C.‐Y. (2018) “Real‐time hybrid simulation for an RC bridge pier subjected to both horizontal and vertical ground motions.” Earthquake Engineering & Structural Dynamics. 47(7): 1673-1679.
    5. Chang C.M., Frankie T.M., Spencer B.F. and Kuchma D.A. (2015) “Multiple degrees of freedom positioning correction for hybrid simulation.” Journal of Earthquake Engineering. 19(2): 277-296.
    6. Chen P.C., Hsu S.C., Zhong Y.J. and Wang S.J. (2019) “Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry” Smart Structures and Systems. 23(1): 91-106.
    7. Chu S.Y., Lu L.Y., Yeh S.W., Chia P.Y. and Ning W.C. (2018) “Real-time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table.” Structural Control and Health Monitoring. 25(3):e2124.
    8. Computers & Structures, Inc. (2016) “ETABS 2016 CSi Analysis Reference Manual.”
    9. Del Carpio Ramos M., Hashemi M.J. and Mosqueda G. (2013) “Large-scale hybrid simulation of a steel moment frame building from the onset of damage through collapse.” 5th International Conference on Advances in Experimental Structural Engineering, Taipei, Taiwan.
    10. Dermitzakis S.N. and Mahin S.A. (1985) “Development of substructuring techniques for on-linecomputer controlled seismic performance testing.” in Report UCB/EERC- 85/04.1985, Earthquake Engineering Research Center, University of California, Berkeley, CA.
    11. Elkhoraibi T. and Mosalam K.M. (2007) “Towards error free hybrid simulation using mixed variables.” Earthquake Engineering & Structural Dynamics. 36(11): 1497-1522.
    12. Guerrero H., Teran A., Zamora E., Escobar J.A. and Gomez R. (2020) “Hybrid simulation tests of a soft storey frame building upgraded with a buckling-restrained brace (BRB).” The Society for Experimental Techniques. 44: 553–572.
    13. Haselton C.B. and Deierlein G.G. (2007) “Assessing seismic collapse safety of modern reinforced concrete moment frame buildings.” Report No. TR 156, John A. Blume Earthquake Engineering Center, Department of Civil Engineering, Stanford University, CA.
    14. Hashemi M.J., Al-Ogaidi Y., Wilson J.L. and Abdouka K. (2014) “Collapse simulation of multi-story RC buildings through hybrid testing.” Australian Earthquake Engineering Society 2014 Conference, Lorne, Victoria.
    15. Hashemi M.J., Al-Mahaidi R., Kalfat R. and Burnett G. (2015) “Development and validation of multi-axis substructure testing system for full-scale experiments.” Australian Journal of Structural Engineering. 16(4): 302–315.
    16. Hashemi M.J., Al-Ogaidi Y., Al-Mahaidi R., Kalfat R., Tsang H.-H. and Wilson J.L. (2016) “Application of Hybrid Simulation for Collapse Assessment of Post-Earthquake CFRP-Repaired RC Columns” Journal of Structural Engineering, ASCE. 143(1).
    17. Ibarra L.F. and Krawinkler H. (2005) “Global collapse of frame structures under seismic excitations”, Report No. TR 152, John A. Blume Earthquake Engineering Center, Department of Civil Engineering, Stanford University, CA.
    18. Imanpour A, Leclerc M., Siguier R. and Tremblay R. (2017) “Application of hybrid simulation for the evaluation of the buckling response of steel braced frame columns.” The 8th European Conference on Steel and Composite Structures. 1(2-3):2877-2886.
    19. Iranmanesh A. (2012) “A Hybrid Simulation Based Method for Post Seismic Structural Health Monitoring of Concrete Bridges” Ph.D. Dissertation, University of Illinois, Chicago.
    20. Karaaslan E. (2015) “Seismic performance assessment of wide beam infill joist block frame structures in turkey” Master's thesis, Middle East Technical University.
    21. Lignos D.G. (2008) “Sidesway collapse of deteriorating structural systems under seismic excitations.” Ph.D. Dissertation, Department of Civil and Environmental Engineering, Stanford University, CA.
    22. Lignos D.G. and Krawinkler H. (2011) “Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading.” Journal of Structural Engineering. ASCE, 137(11):1291-1302.
    23. Lignos D.G. and Krawinkler H. (2012) “Sidesway collapse of deteriorating structural systems under seismic excitations.” Report No. TR 177, John A. Blume Earthquake Engineering Research Center, Stanford University, CA.
    24. Magonette G. (2001) “Development and application of large-scale continuous pseudo-dynamic testing techniques.” Philosophical Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences. 359(1786): 1771-1799.
    25. Mazzoni S., McKenna F., Scott M.H. and Fenves G.L. et al. (2007) “OpenSees command language manual.” Pacific Earthquake Engineering Research.
    26. McCrum D.P. and Williams M.S. (2016) “An overview of seismic hybrid testing of engineering structures.” Engineering Structures. 118(1):240-261.
    27. Mosalam K.M. and Günay S. (2014) “Seismic performance evaluation of high voltage disconnect switches using real-time hybrid simulation (1).” Earthquake Engineering & Structural Dynamics. 43:1223-1237.
    28. Mosqueda G. (2003). Continuous hybrid simulation with geographically distributed substructures, Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, CA.
    29. Mosqueda G., Stojadinovic B. and Mahin S. (2005) “Implementation and accuracy of continuous hybrid simulation with geographically distributed substructures.” Earthquake Engineering Research Center, University of California, Berkeley, CA.
    30. Moustafa M.A. and Mosalam K.M. (2015a) “Structural behavior of column-bent cap beam-box girder systems in reinforced concrete bridges subjected to gravity and seismic loads--Part I: pre-test analysis and quasi-static experiments.” PEER Report No. 2015/09, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
    31. Moustafa M.A. and Mosalam K.M. (2015b) “Structural behavior of column-bent cap beam-box girder systems in reinforced concrete bridges subjected to gravity and seismic loads--Part II: hybrid simulation and post-test analysis.” PEER Report No. 2015/10, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
    32. Mukai Y., Yokoyama A., Fushihara K. Fujinaga T. and Fujitani H. (2020) “Real-time hybrid test using two-individual actuators to evaluate seismic performance of RC frame model controlled by AMD.” Frontiers in Built Environment. (6)145.
    33. Nakashima M., Ishii K., Kamagata S., Tsutsumi H. and Ando K. (1988) “Feasibility of pseudo dynamic test using substructuring techniques.” Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo, Japan.
    34. Nakashima M., Kato H. and Takaoka E. (1992) “Development of real-time pseudo dynamic testing.” Earthquake Engineering & Structural Dynamics. 21(1): 79-92
    35. Nakashima M. and Masaoka N. (1999) “Real-time on-line test for MDOF systems.” Earthquake Engineering & Structural Dynamics. 28(4): 393-420.
    36. NCREE (2018) “國震中心臺南實驗室啟動實驗規劃書”,國家地震工程研究中心。
    37. NIST (2010) “NERHP seismic design technical brief no. 4: nonlinear structural analysis for seismic design: a guide for practicing engineers.” GCR 10-917-5.
    38. OpenFresco (2014) “Open Framework for Experimental Setup and Control (Version 2.7.0).” Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
    39. OpenSees (2015) “Open System for Earthquake Engineering Simulation (Version 2.4.5).” Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
    40. Park J., Strepelias E., Stathas N., Kwon O.-S. and Bousias S. (2020) “Application of hybrid simulation method for seismic performance evaluation of RC coupling beams subjected to realistic boundary condition.” Earthquake Engineering & Structural Dynamics. 50(2): 375-393.
    41. Rahnama M. and Krawinkler H. (1993) “Effect of soft soils and hysteresis models on seismic design spectra.” Report No. TR 108, John A. Blume Earthquake Engineering Research Center, Department of Civil Engineering, Stanford University, CA.
    42. Sarebanha A., Schellenberg A.H., Schoettler M.J., Mosqueda G. and Mahin S.A. (2019) “Real-time hybrid simulation of seismically isolated structures with full-scale bearings and large computational models.” Computer Modeling in Engineering & Sciences. 120(3): 693-717.
    43. Schellenberg A.H., Mahin S.A. and Fenves G.L. (2009a) “Advanced implementation of hybrid simulation.” PEER Report No. 2009/104, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
    44. Schellenberg A.H., Kim H.K., Takahashi Y., Fenves G.L. and Mahin S.A. (2009b) “OpenFresco command language manual.” Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
    45. Schellenberg A.H., Kim H.K., Takahashi Y., Fenves G.L. and Mahin S.A. (2009c) “OpenFresco framework for hybrid simulation: installation and getting started manual.” Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
    46. Schellenberg A.H., Sarebanha A., Schoettler M.J., Mosqueda G., Benzoni G. and Mahin S.A. (2015) “Hybrid simulation of seismic isolation systems applied to an APR-1400 nuclear power plant.” PEER Report No. 2015/05, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
    47. Schellenberg A.H., Shao B. and Mahin S. (2017) “Development of a large-scale 6DOF hybrid shake table and application to testing response modification devices for tall building.” 16th World Conference on Earthquake, Santiago, Chile.
    48. Schellenberg A.H., Huang Y. and Mahin S.A. (2019) “Structural finite element software coupling using adapter elements.” Computer Modeling in Engineering & Science. 120(3): 719-737.
    49. Schneider S.P. and Roeder C.W. (1994) "An inelastic substructure technique for the pseudodynamic test method." Earthquake Engineering & Structural Dynamics. 23(7): 761-775.
    50. Scott M.H. and Fenves G.L. (2010) “Krylov subspace accelerated newton algorithm: application to dynamic progressive collapse simulation of frames.” Journal of Structural Engineering. 136(5).
    51. Shao X., Reinhorn A.M. and Sivaselvan M.V. (2011) “Real-time hybrid simulation using shake tables and dynamic actuators.” Journal of Structural Engineering, ASCE. 137(7):748-760.
    52. STKO (2017) “Scientific ToolKit for OpenSees.” Asdea Software Technology, Pescara, Italy.
    53. Takanashi K., Udagawa K., Seki M., Okada T., and Tanaka H. (1975) “Nonlinear earthquake response analysis of structures by a computer-actuator on-line system (details of the system).” Transactions of the Architectural Institute of Japan. 229: 77-83.
    54. Takeda T., Sozen M.A. and Nielsen N.N. (1970) “Reinforced Concrete Response to Simulated Earthquakes.” Journal of the Structural Division. 96(12): 2557-2573.
    55. Thewalt C.R. and Mahin S.A. (1987) “Hybrid solution techniques for generalized pseudodynamic testing.” Earthquake Engineering Research Center, University of California, Berkeley, CA.
    56. Tucker C. and Ibarra L. (2019) “Seismic performance of circular concrete filled steel tube columns for accelerated bridge construction.” MPC-19-383, Upper Great Plains Transportation Institute, Fargo: Mountain-Plains Consortium, North Dakota State University.
    57. Wang K.J., Chuang M.C., Tsai K.C., Li C.H., Chin P.Y. and Chueh S.Y. (2018) “Hybrid testing with model updating on steel panel damper substructures using a multi‐axial testing system.” Earthquake Engineering & Structural Dynamics. 48(3): 347-365.
    58. Yang C., Cai X., Lai Z. and Yuan Y. (2020) “Hybrid Test on a Simply Supported Bridge With High-Damping Rubber Bearings” Frontiers in Built Environment. 6(141).
    59. You S. and Gao X. (2017) “Hybrid simulation combined with fatigue testing method.” The 6th International Symposium on Energetic Materials and their Applications, Sendai, Japan.
    60. 王又德 (2015) “高強度鋼纖維鋼筋混凝土柱軸壓及韌性行為研究”,國立臺灣大學土木工程學系,碩士論文。指導教授:廖文正。
    61. 王孔君,陳家乾 (2010) “臺美三層樓挫屈束制斜撐構架網路合作擬動態試驗方法”,國研科技,第28期,124-129頁。
    62. 王國榮 (2007) “環氧樹脂修補破壞混凝土之成效研究”, 國立成功大學土木工程學系,碩士論文,7月。指導教授:李德河。
    63. 余立偉 (2019) “1/2縮尺非韌性鋼筋混凝土建築受近斷層地震之振動台實驗與分析”,國立成功大學土木工程學系,碩士論文,7月。指導教授:劉光晏。
    64. 林保均,竹內徹 (2020) “挫屈束制支撐伸臂桁架系統於高樓層建築之耐震性能”, 中華民國第15屆結構工程及第5屆地震工程研討會,9月2-4日,台南,論文編號:162。
    65. 林煒松 (2018) “採用不同振動台進行即時複合實驗之效能探討”,國立成功大學土木工程學系,碩士論文。指導教授:朱世禹。
    66. 林錦洋 (2021) “足尺變曲率滑動隔震結構之即時複合實驗”,國立成功大學土木工程學系,碩士論文。指導教授:盧煉元。
    67. 林瑞良,陳雯惠,劉郁芳,周德光,葉勇凱,趙書賢,郭俊翔,蕭輔沛,翁元滔,周中哲 (2020) “鋼筋混凝土建築之非線性反應歷時分析”,國家地震工程研究中心,NCREE-20-001。
    68. 高立恒 (2015) “改良式張氏積分法在勁度硬化系統的性能表現”,國立臺北科技大學土木工程系土木與防災碩士班(碩士在職專班),碩士論文。指導教授:張順益。
    69. 郝偉 (2011) “基於OpenFresco軟體的混合試驗方法”,哈爾濱工業大學防災減災工程及防護工程學系,碩士論文,6月。指導教授:吳斌、許國山。
    70. 凌于哲 (2019) “鋼筋混凝土柱遲滯迴圈之模擬研究”,國立臺灣大學土木工程學系,碩士論文。指導教授:黃世建。
    71. 徐安 (2019) “即時複合實驗於互制式減震系統效能驗證之應用”,國立成功大學土木工程學系,碩士論文,7月。指導教授:盧煉元。
    72. 陳沛清,蔡克銓 (2013) “地震工程即時複合試驗技術之研究”,國家地震工程研究中心,NCREE-13-001。
    73. 陳銘良 (2006) “感應馬達無感測直接轉矩控制系統”,國立高雄應用科技大學電機工程系碩士班,碩士論文。指導教授:徐晉元。
    74. 陳學偉,林哲 (2014) “結構彈塑性分析程序OpenSEES原理與實例”。
    75. 張汎博 (2021) “即時複合實驗技術於鋼筋混凝土構架之應用及驗證”,國立成功大學土木工程學系,碩士論文。指導教授:盧煉元。
    76. 混凝土工程委員會 (2011) “混凝土工程設計規範之應用”,土木404-100,中華土木水利工程學會。
    77. 湯宇仕 (2018) “考量近斷層震波作用下之隔震建物機率式耐震評估法”,國立成功大學土木工程學系,碩士論文,7月。指導教授:盧煉元。
    78. 葉士瑋 (2017) “具摩擦特性振動控制系統即時複合實驗之振動台實驗驗證”,國立成功大學土木工程學系,博士論文。指導教授:朱世禹、盧煉元。
    79. 葉勇凱 (2005) “校舍建築非線性數值分析”,國家地震工程研究中心,NCREE-05-002。
    80. 董孟洧 (2020) “振動臺子結構即時複合實驗應用於結構自體調諧質量阻尼系統之可行性研究”,國立臺灣科技大學營建工程系,碩士論文。指導教授:陳沛清。
    81. 雷凱婷 (2020) “TMD於離岸風機結構之減震效能振動台實驗與即時複合實驗研究”,國立成功大學土木工程學系,碩士論文,7月。指導教授:盧煉元。
    82. 楊麒,胡宣德 (2016) “有限元軟體耦合運算-以實驗控制軟體架構耦合Abaqus與Opensees”,2016 SIMULIA Regional User Meeting,桃園,台灣。
    83. 蕭予欣 (2019) “考慮近斷層脈衝效應之隔震設計法及其機率式性能評估”,國立成功大學土木工程學系,碩士論文,7月。指導教授:盧煉元。
    84. 蕭輔沛,蔡仁傑,翁樸文,沈文成,徐侑呈,周德光,翁元滔,簡文郁,林佳蓁,劉勛仁 (2021) “臺灣鋼筋混凝土結構耐震評估非線性動力分析手冊 (TEASDA 1.0)”,國家地震工程研究中心,NCREE-21-001。
    85. 謝秉坤 (2013) “構架非線性側推分析模式探討”,國立交通大學土木工程學系,碩士論文,6月。指導教授:林昌佑。
    86. 賴志瑜 (2013) “構架側推分析行為探討”,國立交通大學土木工程學系,碩士論文,12月。指導教授:林昌佑。
    87. 戴吟純 (2020) “使用高韌性纖維混凝土補強RC構架含填充磚牆:耐震分析模型”,國立成功大學土木工程學系,碩士論文。指導教授:洪崇展、洪李陵。
    88. 簡正彥 (2007) “RC構架磚牆側向推垮分析-使用OpenSees軟體”,國立暨南國際大學地震與防災工程研究所,碩士論文。指導教授:鄭全桓。

    無法下載圖示 校內:2026-10-14公開
    校外:2026-10-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE