| 研究生: |
利俊鴻 Lee, Chun-Hung |
|---|---|
| 論文名稱: |
電子用低介電材料之合成與性質之研究 Synthesis and properties of low dielectric materials for microelectronic application |
| 指導教授: |
王春山
Wang, Chun-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 雙馬來醯亞胺樹脂 、氰酸脂 |
| 外文關鍵詞: | BT resin, BMI, cyanate ester |
| 相關次數: | 點閱:103 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究主題是採用輕油裂解的廉價副產物Dicyclopentadiene(DCPD)與Dipentene(DP)為原料,藉由原料的疏水性,低極性及剛硬性脂環狀結構,合成新穎含DCPD或DP結構之氰酸脂單體及雙馬來醯亞胺單體,以FT-IR、EA、Mass、NMR分析鑑定產物結構,確認無誤。
將所合成DCPD型和DP型氰酸脂單體,分別配合商業化常用單體(雙酚A二氰酸脂,BADCY)製成種類不同、比例不同之氰酸脂共聚酯,詳細探討DCPD和DP的結構在耐熱性,吸濕率,介電係數和介電損失,熱安定性及尺寸安定性的影響。由結果發現,DCPD及DP型氰酸脂硬化物的吸濕率(0.88%和0.95%)約為BADCY硬化物(1.77%)的一半,而介電係數約2.5~2.6,介電損失約0.003~0.029皆比商業化樹脂低很多,顯示DCPD和DP結構的導入,可以降低硬化樹脂的吸濕率、介電係數及介電損失,並且會有高的玻璃轉移溫度(250℃以上),良好的熱安定性(熱裂解溫度皆在420℃以上)及尺寸安定性。
雙馬來醯亞胺-三氮雜苯樹脂(bismaleimide-triazine resin),簡稱BT樹脂,是本論文的主要研究方向。此種樹脂是一種已商業化之積層樹脂,具耐高溫,抗溶劑性,低吸水性,低介電常數等特性,可以廣泛的應用於航太工業上的高溫接著劑,保護塗裝,複合基材,亦可應用於電子工業上的多層印刷電路板及封裝材料上。
將所合成的含DCPD和DP結構的雙馬來醯亞胺單體,配合DCPD和DP型氰酸脂單體,製成比例不同之DCPD和DP系列BT樹脂來和商業化BT樹脂作比較。由結果顯示,DCPD型和DP型BT樹脂的吸濕率分別為0.88~1.33%和0.95~1.34%,比商用BT樹脂(吸濕率1.77~5.46%)低很多;介電係數分別為2.53~2.98和2.56~2.99;介電損失則分別為0.003~0.033和0.005~0.035,皆比商用BT樹脂低很多。且DCPD和DP型BT樹脂皆有高玻璃轉移溫度(Tg約258~345℃),良好的熱安定性(熱裂解溫度在429℃以上)及尺寸安定性。綜合以上諸優異特性,可確定DCPD型和DP型BT樹脂皆為低吸濕率、低介電係數及低介電損失的高性能樹脂。
Abstract
In this thesis , new aromatic cyanate esters and bismaleimides were synthesized from dicyclopentadiene(DCPD) and dipentene(DP) , the inexpensive byproducts from naphtha cracker . The monomers were characterized by infrared (IR) , proton nuclear magnetic resonance (H-NMR) , elemental analyses (EA) and mass spectra (MS) .
Both new cyanate ester monomers containing DCPD and DP were combined with commercial available monomer (bisphenol A dicyanate ester , BADCY) in various ratio to form cocyanate esters polymer .The influences of DCPD and DP structures on moisture absorption , dielectric constant , dielectric loss , thermal stability and dimensional stability were explored. The cured cyanate esters containing DCPD(or DP) were superior to commercial resins in moisture absorption and electric properties . The moisture absorption was about 0.88%(or 0.95%);one half that of cured BADCY, and dielectric constants of cured DCPD(or DP) cyanate ester were ranged from 2.5~2.6 , dissipation factor were ranged from 0.003~0.029 , which were much lower than that of cured BADCY . Obviously , we can lower the moisture absorption , dielectric constant and dielectric loss by the use of DCPD and DP , and these cured resins all have high glass transition temperature(above 250℃) , excellent thermal stability(Td5% all above 420℃) and dimensional stability .
Synthesis of the bismaleimide triazine (BT) type resins which are high performance laminating resins are my major research object . The bismaleimide triazine resins have special features , such as better resistance to moisture absorption , excellent chemical resistance , good dimensional stability , low dielectric constant , and low dielectric loss , which make this type of resin important in the aerospace and electronic industries . Aerospace applications include high temperature adhesives, protective coatings and matrix resin for structural composite. Electronic applications include multilayer printed circuit boards , semiconductor encapsulants and interposer for IC.
The combination of bismaleimide containing DCPD (or DP) with DCPD(or DP) cyanate ester have produced a series of DCPD(or DP) BT resins which are compared with the commercially available BT resins . Observing from the results , the moisture absorption of DCPD(or DP) BT resins is 0.88~1.33%(or 0.95~1.34%) much lower than the regular BT resins(1.77~5.46%) ; the dielectric constant is about 2.53~2.98 (or 2.56~2.99), and the dielectric loss is about 0.003~0.033 (or 0.005~0.035) , which were much lower than the regular BT resins . Both DCPD and DP BT resins have high glass transition temperature (Tg about 258~345℃) , good thermal stability (Td above 429℃) , and dimensional stability suitable for the high performance applications .
參考文獻
1. 產業經濟 第190期
2. 化工資訊9(9),10(1995)
3. 材料與社會 52,4(1991)
4. 電子與材料雜誌,第11期,P.109~115。
5. Lin/Pearce, “ High-Performance Thermosets, Chemistry, Properties, Applications” , Hanser/ Gardner Publications, Inc., Cincinnati(1994).
6. B.G. Richard, Polymer Preprints, 27(n1), 491(1986)
7. 李明峻,成功大學博士論文(1999)
8. R.B.Graver, Polym. Prep., 32, 182 (1990)
9. D.Shimp and M.Southcott, 38th Int. SAMPE Symp., May, 370(1993)
10. V.A.Pankratov et al., Russ. Chem. Rev., 46(3), 278 (1977)
11. R.M.Joshi, Makromol. Chem.,53,33 (1962)
12. R.C.P.Cubbon, Polymer, 6,419 (1965)
13. B.S.Rao, J.Polym. Sci. Polym. Lett., 26, 3 (1988)
14. H.D.Stenzenberger, Appl. Polym. Symp., 31,91 (1977)
15. N.Z.Searle, U.S.Patent, 244536, 1948
16. R.H.Pater, 纖維工業, 50, (3) 106 (1994)
17. M.Guku, K.Suzuki, and K. Nakamichi, U.S.Patent 4110364 (1978)
18. Stenzenberger and P. Hergenrother, in Polyimides. ed. D.Wilson et al. Blackie, Glasgow, U.K. 1991.
19. Y.L.Liu, G.H.Hsiue, and Y.S.Chiu, Polym. Sci. Part A : Polym. Chem., 35 (3) , 565 (1997)
20. 王春山,何宗漢,”低應力半導體封裝材料簡介”,工程月刊,第72卷11期,P.19~28(1999)
21. JP 特開平 8-134184(1996)
22. JP 特開平 10-1889(1998)
23. JP 特開平 9-263641(1997)
24. JP 特開平 8-301973(1996)
25. JP 特開平 4-26642(1992)
26. JP 特開平 7-173253(1995)
27. JP 特開平 8-55940(1996)
28. JP 特開平 8-325355(1996)
29. JP 特開平 8-120075(1996)
30. JP 特開平 7-179570(1995)
31. JP 特開平 7-215933(1995)
32. JP 特開平 10-45838(1998)
33. JP 特開平 7-268076(1995)
34. JP 特開平 11-181052(1999)
35. JP 特開平 11-279373(1999)
36. 黃漢章,成功大學博士論文(1996)
37. 蔣榮中,成功大學碩士論文(2001)
38. 江正榮,成功大學碩士論文(2001)
39. 楊曉鈴,成功大學碩士論文(2001)
40. 楊榮文,成功大學博士論文(1997)