| 研究生: |
蘇琬屏 Su, Wan-Ping |
|---|---|
| 論文名稱: |
粒線體恆定於A群鏈球菌感染肌肉細胞中之角色 Role of mitochondrial homeostasis in group A streptococcus infected muscle cells |
| 指導教授: |
蔡佩珍
Tsai, Pei-Jane |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | A群鏈球菌 、鏈球菌溶血素S 、粒線體自噬 、肌肉 |
| 外文關鍵詞: | Group A streptococcus, streptolysin S, mitophagy, muscle |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A群鏈球菌可導致人類大範圍的感染,包含了皮膚、喉嚨、血液和肌肉。其中侵襲性A群鏈球菌所造成最為嚴重的疾病為壞死性筋膜炎,被視為快速的肌肉損壞。肌肉細胞富含粒線體以提供能量來維持肌肉的正常功能。粒線體恆定性對於調控其本身的功能以及透過Parkin/PINK1路徑的粒線體自噬清除損壞的粒線體為必要的。粒線體在先天性免疫上扮演著重要的角色,病原體可藉由攻擊粒線體以保護自身在細胞內的存活。因此我們假設在A群鏈球菌是透過破壞粒線體以增加其本身在細胞內的存活進而造成肌肉損壞。首先,我們以A群鏈球菌感染老鼠的肌肉細胞,發現A群鏈球菌會導致粒線體的數量損失以及膜的破損,因此增加粒線體自噬的發生。抑制粒線體自噬可維持粒線體數量與減少胞內細菌數量,顯示抑制粒線體自噬作用有助於胞內細菌的清除。為了評估細菌毒力因子對粒線體的影響,我們篩選毒力基因突變鏈球菌,發現其中鏈球菌溶血素S (SLS)突變株只會引起輕微的粒線體數量損失和粒線體自噬。由於SLS是一個會造成穿孔的毒素,我們更發現SLS突變株導致較輕微的粒線體膜的破損、細胞色素c的釋出、OPA1的降解及粒線體斷裂,顯示SLS與CCCP的作用相似。另外,前處理CCCP後再感染SLS突變株可以增加胞內細菌的存活。除此之外,從小鼠實驗中,我們發現SLS會導致嚴重的肌肉損壞與粒線體型態的變化。總結我的研究結果,我們證實了A群鏈球菌的感染會透過SLS引發粒線體的破壞所造成的粒線體自噬,進一步增加胞內細菌存活,顯示粒線體在A群鏈球菌的感染中扮演了不可或缺的保護角色。
Group A streptococcus (GAS) causes a wide range of infections on human, including skin, throat, blood, and muscles. The most severe form of invasive group A streptococcal disease is necrotizing fasciitis described as rapidly muscular destruction. Muscles are responsible for energetic functions provided by abundant mitochondria. Mitochondria homeostasis is essential for the regulation of its function and the dysfunctional mitochondria can be eliminated through Parkin/PINK1-dependent mitophagy. Mitochondria play an important role in innate immunity that pathogens target to mitochondria as a strategy for preserving intracellular survival. Thus, we hypothesized that GAS induced muscular destruction that increases the intracellular bacterial survival is through damaging mitochondria. First, we infected mouse myoblasts, C2C12, with GAS and found that GAS caused loss of mitochondrial contents and permeabilized mitochondrial membrane thus increased mitophagy. Attenuation of mitophagy preserved mitochondrial contents and decreased intracellular bacterial number, suggesting inhibiting mitophagy was beneficial for intracellular bacterial clearance. To assess which bacterial virulence factor contributed to the disturbance of mitochondria, we found that streptolysin S (SLS) mutant induced less mitochondrial loss and mitophagy. Due to SLS is a pore-forming toxin, we found that SLS mutant caused less mitochondrial permeabilization, cytochrome c release, OPA1 degradation and mitochondrial fission, suggesting the effect of SLS was similar to that of the protonophore CCCP. In addition, CCCP pre-treatment and infection with SLS mutant could enhance intracellular bacterial survival. Furthermore, we found that GAS with SLS led to severe muscular damage and the alteration of mitochondrial morphology in vivo. Taken together, we found that GAS infection triggered mitophagy mediated by mitochondrial damage which contributed by SLS and further promoted intracellular bacterial survival, suggesting mitochondria played a critical innate protective role during GAS infection.
1. Timothy, J.M., The pathogenesis of streptococcal infections: from Tooth decay to meningitis. Nature Reviews Microbiology, 2003. 1(3): p. 219-230.
2. Carapetis, J.R., et al., The global burden of group A streptococcal diseases. The Lancet Infectious Diseases, 2005. 5(11): p. 685-694.
3. Lamagni, T.L., et al., Predictors of death after severe Streptococcus pyogenes infection. Emerg Infect Dis, 2009. 15(8): p. 1304-7.
4. Tsai, P.-J., et al., Effect of Group A Streptococcal Cysteine Protease on Invasion of Epithelial Cells. Infection and Immunity, 1998. 66(4): p. 1460-1466.
5. Datta, V., et al., Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Molecular Microbiology, 2005. 56(3): p. 681-695.
6. Carroll, R.K. and J.M. Musser, From transcription to activation: how group A streptococcus, the flesh-eating pathogen, regulates SpeB cysteine protease production. Mol Microbiol, 2011. 81(3): p. 588-601.
7. Saouda, M., et al., Streptococcal Pyrogenic Exotoxin B Enhances Tissue Damage Initiated by Other Streptococcus pyogenes Products. Journal of Infectious Diseases, 2001. 184(6): p. 723-731.
8. Fontaine, M.C., J.J. Lee, and M.A. Kehoe, Combined contributions of streptolysin O and streptolysin S to virulence of serotype M5 Streptococcus pyogenes strain Manfredo. Infect Immun, 2003. 71(7): p. 3857-65.
9. Howard, J., K. Wallace, and G.P. Wright, The inhibitory effects of cholesterol and related sterols on haemolysis by streptolysin O. British journal of experimental pathology, 1953. 34(2): p. 174.
10. Stollerman, G.H., A.W. Bernheimer, and L.C. Mac, The association of lipoproteins with the inhibition of streptolysin S by serum. J Clin Invest, 1950. 29(12): p. 1636-45.
11. Palikaras, K. and N. Tavernarakis, Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Experimental Gerontology, 2014. 56(0): p. 182-188.
12. Zhu, J., K.Z. Wang, and C.T. Chu, After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy, 2013. 9(11): p. 1663-76.
13. Kelly, D.P. and R.C. Scarpulla, Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & Development, 2004. 18(4): p. 357-368.
14. Kim, S.J., et al., Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS Pathog, 2013. 9(12): p. e1003722.
15. The Many Faces of Mitochondrial Autophagy: Making Sense of Contrasting Observations in Recent Research. International Journal of Cell Biology, 2012. 2012: p. 18.
16. Twig, G. and O.S. Shirihai, The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal, 2011. 14(10): p. 1939-51.
17. Abeliovich, H., et al., Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat Commun, 2013. 4: p. 2789.
18. Mitochondrial Dynamics in Mammalian Health and Disease, ed. M. Liesa, M. Palacín, and A. Zorzano. Vol. 89. 2009. 799-845.
19. Guillery, O., et al., Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol Cell, 2008. 100(5): p. 315-25.
20. Head, B., et al., Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol, 2009. 187(7): p. 959-66.
21. Chan, D.C., Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol, 2006. 22: p. 79-99.
22. Arimura, S., et al., Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci U S A, 2004. 101(20): p. 7805-8.
23. Schon, E.A. and R.W. Gilkerson, Functional complementation of mitochondrial DNAs: mobilizing mitochondrial genetics against dysfunction. Biochim Biophys Acta, 2010. 1800(3): p. 245-9.
24. Nakada, K., et al., Inter-mitochondrial complementation: Mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med, 2001. 7(8): p. 934-40.
25. Ono, T., et al., Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet, 2001. 28(3): p. 272-5.
26. Barsoum, M.J., et al., Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. Embo j, 2006. 25(16): p. 3900-11.
27. Twig, G., B. Hyde, and O.S. Shirihai, Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta, 2008. 1777(9): p. 1092-7.
28. Gomes, L.C. and L. Scorrano, High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta, 2008. 1777(7-8): p. 860-6.
29. Malena, A., et al., Inhibition of mitochondrial fission favours mutant over wild-type mitochondrial DNA. Hum Mol Genet, 2009. 18(18): p. 3407-16.
30. Suen, D.F., et al., Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci U S A, 2010. 107(26): p. 11835-40.
31. Skulachev, V.P., Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci, 2001. 26(1): p. 23-9.
32. Aon, M.A., S. Cortassa, and B. O'Rourke, Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci U S A, 2004. 101(13): p. 4447-52.
33. Lee, Y.J., et al., Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell, 2004. 15(11): p. 5001-11.
34. Frieden, M., et al., Ca(2+) homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem, 2004. 279(21): p. 22704-14.
35. Jain, P., Z.-Q. Luo, and S.R. Blanke, Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death. Proceedings of the National Academy of Sciences, 2011. 108(38): p. 16032-16037.
36. Tsai, P.-J., et al., Group A Streptococcus induces apoptosis in human epithelial cells. Infection and immunity, 1999. 67(9): p. 4334-4339.
37. Bentley, C.C., et al., Extracellular group A Streptococcus induces keratinocyte apoptosis by dysregulating calcium signalling. Cellular microbiology, 2005. 7(7): p. 945-955.
38. Timmer, A.M., et al., Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. Journal of Biological Chemistry, 2009. 284(2): p. 862-871.
39. Kim, S.J., G.H. Syed, and A. Siddiqui, Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathog, 2013. 9(3): p. e1003285.
40. Francione, L., et al., Legionella pneumophila multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased Dictyostelium cells. Disease Models & Mechanisms, 2009. 2(9-10): p. 479-489.
41. Song, Z., et al., OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol, 2007. 178(5): p. 749-55.
42. Ehses, S., et al., Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol, 2009. 187(7): p. 1023-36.
43. Arnaudo, E., et al., Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. The Lancet, 1991. 337(8740): p. 508-510.
44. Côté, H.C.F., et al., Changes in Mitochondrial DNA as a Marker of Nucleoside Toxicity in HIV-Infected Patients. New England Journal of Medicine, 2002. 346(11): p. 811-820.
45. Garrabou, G., et al., The effects of sepsis on mitochondria. J Infect Dis, 2012. 205(3): p. 392-400.
46. Gray, M.W., G. Burger, and B.F. Lang, Mitochondrial Evolution. Science, 1999. 283(5407): p. 1476-1481.
47. Ashrafi, G. and T.L. Schwarz, The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 2013. 20(1): p. 31-42.
48. Stavru, F., et al., Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proceedings of the National Academy of Sciences, 2011. 108(9): p. 3612-3617.
49. Merkwirth, C., et al., Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev, 2008. 22(4): p. 476-88.
50. Baker, M.J., et al., Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J, 2014. 33(6): p. 578-93.
51. Käser, M., et al., Oma1, a Novel Membrane-bound Metallopeptidase in Mitochondria with Activities Overlapping with the m-AAA Protease. Journal of Biological Chemistry, 2003. 278(47): p. 46414-46423.
52. Jiang, J.-H., J. Tong, and K. Gabriel, Hijacking Mitochondria: Bacterial Toxins that Modulate Mitochondrial Function. IUBMB Life, 2012. 64(5): p. 397-401.
53. West, A.P., et al., TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011. 472(7344): p. 476-480.
54. Slauch, J.M., How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol, 2011. 80(3): p. 580-3.
55. Todd, E.W., The differentiation of two distinct serological varieties of streptolysin, streptolysin O and streptolysin S. The Journal of Pathology and Bacteriology, 1938. 47(3): p. 423-445.
56. Keiser, H., G. Weissmann, and A.W. Bernheimer, STUDIES ON LYSOSOMES IV. Solubilization of Enzymes during Mitochondrial Swelling and Disruption of Lysosomes by Streptolysin S and Other Hemolytic Agents. The Journal of cell biology, 1964. 22(1): p. 101-113.
57. Hryniewicz, W. and J. Pryjma, Effect of streptolysin S on human and mouse T and B lymphocytes. Infection and Immunity, 1977. 16(3): p. 730-733.
58. Taketo, Y. and A. Taketo, Effects of trypan blue and related compounds on production and activity of streptolysin S. Z Naturforsch C, 1982. 37(5-6): p. 385-9.
校內:2019-09-12公開