| 研究生: |
張群賢 Chang, Chun-Hsien |
|---|---|
| 論文名稱: |
以音射法辨識牙本質與填補材料之破裂特徵 Cracking Characterization of Dentine and Filling Composites Using Acoustic Emission |
| 指導教授: |
侯琮欽
Hou, Tsung-Chin |
| 共同指導教授: |
陳永崇
Chen, Yung-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 音射法 、數位影像相關係數 、微型電腦斷層掃描 |
| 外文關鍵詞: | acoustic emission, digital image correlation, micro computerized tomography |
| 相關次數: | 點閱:123 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
音射法(acoustic emission, AE)乃是利用壓電感測器偵測因物體內部發生變化而釋放出彈性波,並造成表面極微振動的方法,將此振動轉換為電子訊號後加以分析,便能夠用以辨識該物體破壞的類型與特徵。數位影像相關係數(digital image correlation, DIC)法藉由物體變形前後表面特殊的斑點記號分布之變化所造成相關係數的差異,以獲得物體表面的位移場與應變,能夠用以監測物體表面之變化。微型電腦斷層掃描(micro computerized tomography, micro-CT)犧牲可掃描之物體最大體積以獲得在小物體擁有高解析度的斷層掃描影像資料,能夠用來清楚獲得物體內部結構的詳細資訊。本研究主要使用音射法輔以數位影像相關係數法與微型電腦斷層掃描以辨識牙本質與填補材料之破裂特徵。實驗設計單軸壓力情況下對三種試片:複合材試片、牙本質試片、填補材料試片進行加載,於加載前使用微型電腦斷層掃描挑出性質相近之試片;於加載過程中蒐集音射訊號並同時擷取數位影像;加載後以微型電腦斷層掃描影像確認破裂之形成,最後分析音射訊號,以獲得牙本質與填補材料之破裂特徵差異。本研究結果顯示,部分音射參數在辨識牙本質與填補材料之破裂特徵確實有效。「平均頻率(average frequency, AF)」方面,牙本質的80.67 kHz(Ch1)和76.50 kHz(Ch2)顯著低於填補材料的98.34 kHz(Ch1)和91.12 kHz(Ch2);「總撞擊數」特徵方面,牙本質之「總撞擊數」顯著高於填補材料;與混凝土材料相似,「上升角(RA)」與「平均頻率(AF)」之二維破裂模式分布圖於牙科領域中同樣能夠對單軸壓力實驗下牙科材料之破裂模式進行辨別。
Operative dentistry restores the decayed tooth to recover their aesthetics and functions, the most important is to prevent tooth from occurring caries once again. According to different situation to choose filling composites, such as amalgam, ceramic and composite resin. Composite resin was used as the material in this study, which may be due to contraction stress or higher bite force and lead restoration to failure. In recent years, a lot of dental researches have applied acoustic emission (AE) technique to investigate how different restoration designs or materials influence the quantity of AE signals during loading process, no further analysis about AE signals. The aim of this study is applying AE technique to locate the failure position by distinguishing the cracking characterizations between dentine and filling composites through analyzing the AE signals. Except AE technique were used, there were other two non-destructive testing (NDT)were used in this study as well, digital image correlation (DIC) technique and micro computerized tomography (micro-CT) technique, that were used to assist analysis. According to the statistics results of the test, some of AE parameters were indeed effective on distinguishing the cracking characterizations between dentine and filling composites. The total hits and the mean value of average frequency (AF) of cracking signals of dentine were higher than filling composite. In addition, the 2-D cracking mode distribution figure made up of rise angle (RA) and AF could identify the cracking mode of dental materials under uniaxial compressive test.
[1] 鄭峯昇, "音射法於自癒性混凝土損傷評估與破壞模式之探討," 碩士, 土木工程研究所, 國立成功大學, 台南, 2014.
[2] 童士恒, 翁孟嘉, and 施明祥, "數位影像相關係數法於擋土牆監測之應用," 大地技師線上期刊, vol. 8, pp. 68-77, 2014.
[3] N. Garg and A. Garg, Textbook of operative dentistry, 2 ed.: JAYPEE, 2013.
[4] A. Hervás-García, M. Martínez-Lozano, J. Cabanes-Vila, A. Barjau-Escribano, and P. Fos-Galve, "Composite resins. A review of the materials and clinical indications," Med Oral Patol Oral Cir Bucal, vol. 11, pp. E215-20, 2006.
[5] 黃洛豪, "牙科第五級複合樹脂填補在咬合力作用下之機械行為," 碩士, 機械工程研究所, 國立成功大學, 台南, 2015.
[6] N. Ilie and R. Hickel, "Resin composite restorative materials," Aust Dent J, vol. 56 Suppl 1, pp. 59-66, Jun 2011.
[7] K. V. Kiran, A. Tatikonda, K. Jhajharia, S. Raina, H. Lau, D. Katare, et al., "In vitro evaluation of the compressive strength of microhybrid and nanocomposites," 2014.
[8] K. Pradeep, K. Ginjupalli, M. A. Kuttappa, A. Kudva, and R. Butula, "In vitro comparison of compressive strength of bulk-fill composites and nanohybrid composite," World Journal of Dentistry, vol. 7, pp. 119-122, 2016.
[9] H. Li, J. Li, X. Yun, X. Liu, and A. S. Fok, "Non-destructive examination of interfacial debonding using acoustic emission," Dent Mater, vol. 27, pp. 964-71, Oct 2011.
[10] B. Yang, J. Guo, Q. Huang, Y. Heo, A. Fok, and Y. Wang, "Acoustic properties of interfacial debonding and their relationship with shrinkage stress in Class-I restorations," Dent Mater, vol. 32, pp. 742-8, Jun 2016.
[11] S. F. Chuang, C. H. Chang, and T. Y. Chen, "Contraction behaviors of dental composite restorations--finite element investigation with DIC validation," J Mech Behav Biomed Mater, vol. 4, pp. 2138-49, Nov 2011.
[12] C. A. Carrera, Y. C. Chen, Y. Li, J. Rudney, C. Aparicio, and A. Fok, "Dentin-composite bond strength measurement using the Brazilian disk test," J Dent, vol. 52, pp. 37-44, Sep 2016.
[13] 童士恒, 施明祥, 葉明龍, 俞肇球, 江政賢, 陳慶頤, et al., "數位影像相關係數法於生醫工程應用之研究," 生物醫學工程國際研討會暨中華民國生物醫學工程學會年度學術研討會,台北, 2009.
[14] Y. H. Huang, C. Quan, C. J. Tay, and L. J. Chen, "Shape measurement by the use of digital image correlation," Optical Engineering, vol. 44, p. 087011, 2005.
[15] 郭其珍, 施明祥, and 李增欽, "數位影像相關係數法於混凝土張力開裂之監測," 第十屆中華民國結構工程研討會,桃園, 2010.
[16] S. H. Tung, M. C. Weng, and M. H. Shih, "Measuring the in situ deformation of retaining walls by the digital image correlation method," Engineering Geology, vol. 166, pp. 116-126, 2013.
[17] 童士恆, 施明祥, 郭瑞昭, and 翁孟嘉. (2008) 數位影像相關係數法於土木工程監檢測之應用. 地工技術. 81-90.
[18] S. F. Chuang, T. Y. Chen, and C. H. Chang, "Application of digital image correlation method to study dental composite shrinkage," Strain, vol. 44, pp. 231-238, 2008.
[19] J. y. Li, A. Lau, and A. S. L. Fok, "Application of digital image correlation to full-field measurement of shrinkage strain of dental composites," Journal of Zhejiang University SCIENCE A, vol. 14, pp. 1-10, 2013.
[20] M. Huang, L. Jiang, P. K. Liaw, C. R. Brooks, R. Seeley, and D. L. Klarstrom, "Using Acoustic Emission in Fatigue and Fracture Materials Research," JOM, vol. 50, pp. 1-14, 1998.
[21] 賀天行, "音射與電阻抗法檢測鋼筋混凝土高溫後之殘餘握裹," 碩士, 土木工程研究所, 國立成功大學, 台南, 2016.
[22] J. U. Gu and N. S. Choi, "Evaluation of marginal failures of dental composite restorations by acoustic emission analysis," Dental Materials Journal, vol. 32, pp. 398-404, 2013.
[23] M. Ohtsu, T. Isoda, and Y. Tomoda, "Acoustic emission techniques standardized for Concrete structures " J. Acoustic Emission, vol. 25, pp. 21-32, 2007.
[24] D. G. Aggelis, "Classification of cracking mode in concrete by acoustic emission parameters," Mechanics Research Communications, vol. 38, pp. 153-157, 2011.
[25] H. A. Elfergani, R. Pullin, and K. M. Holford, "Damage assessment of corrosion in prestressed concrete by acoustic emission," Construction and Building Materials, vol. 40, pp. 925-933, 2013.
[26] A. Lavrov, "The Kaiser effect in rocks: principles and stress estimation techniques," International Journal of Rock Mechanics and Mining Sciences, vol. 40, pp. 151-171, 2003.
[27] C. U. Grosse and M. Ohtsu, Acoustic emission testing: Springer, 2008.
[28] K. Ohno and M. Ohtsu, "Crack classification in concrete based on acoustic emission," Construction and Building Materials, vol. 24, pp. 2339-2346, 2010.
[29] N. S. Choi, J. U. Gu, and K. Arakawa, "Acoustic emission characterization of the marginal disintegration of dental composite restoration," Composites Part A: Applied Science and Manufacturing, vol. 42, pp. 604-611, 2011.
[30] Physical-Acoustic-Corporation, PCI-2 BASED AE SYSTEM USER'S MANUAL Rev 3 vol. 3. PRINCETON JUNCTION, NJ, 2007.
[31] C. L. Lin, Y. H. Chang, and C. A. Pai, "Evaluation of failure risks in ceramic restorations for endodontically treated premolar with MOD preparation," Dent Mater, vol. 27, pp. 431-8, May 2011.
[32] C. L. Lin, W. C. Kuo, Y. H. Chang, J. J. Yu, and Y. C. Lin, "Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography," Dent Mater, vol. 30, pp. 910-6, Aug 2014.
[33] R. J. Kim, Y. J. Kim, N. S. Choi, and I. B. Lee, "Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites," J Dent, vol. 43, pp. 430-9, Apr 2015.
[34] X. Liu, H. Li, J. Li, P. Lu, and A. S. Fok, "An acoustic emission study on interfacial debonding in composite restorations," Dent Mater, vol. 27, pp. 934-41, Sep 2011.
[35] N. Y. Cho, J. L. Ferracane, and I. B. Lee, "Acoustic emission analysis of tooth-composite interfacial debonding," J Dent Res, vol. 92, pp. 76-81, Jan 2013.
[36] P. Alander, "Acoustic emission analysis of fiber-reinforced composite in flexural testing," Dental Materials, vol. 20, pp. 305-312, 2004.
[37] N. Ereifej, N. Silikas, and D. C. Watts, "Initial versus final fracture of metal-free crowns, analyzed via acoustic emission," Dent Mater, vol. 24, pp. 1289-95, Sep 2008.
[38] V. Arumugam, S. Sajith, and A. J. Stanley, "Acoustic Emission Characterization of Failure Modes in GFRP Laminates Under Mode I Delamination," Journal of Nondestructive Evaluation, vol. 30, pp. 213-219, 2011.
[39] K. Mohamed Bak and K. Kalaichelvan, "Evaluation of Failure Modes of Pure Resin and Single Layer of Adhesively Bonded Lap Joints Using Acoustic Emission Data," Transactions of the Indian Institute of Metals, vol. 68, pp. 73-82, 2015.
[40] J. U. Gu, J. H. Park, S. W. Han, and N. S. Choi, "Waveguide attachment influence on acoustic emission for marginal disintegration of dental composite restorations," Journal of Mechanical Science and Technology, vol. 27, pp. 3665-3671, 2013.
[41] J. C. Kapil, P. Datt, A. Kumar, K. Singh, V. Kumar, and P. K. Satyawali, "Multi-sensor couplers and waveguides for efficient detection of acoustic emission behavior of snow," Cold Regions Science and Technology, vol. 101, pp. 1-13, 2014.
[42] T. N. R. Clementino-Luedemann and K. K. H., "Mineral concentration of natural human teeth by a commercial micro-CT," Dental Materials Journal, vol. 1, pp. 113-119, 2006.
[43] V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, L. V. Hoorebeke, and P. Jacobs, "Recent progress in X-ray CT as a geosciences tool," Applied Geochemistry, vol. 21, pp. 826-832, 2006.
[44] 莊克士, 醫學影像物理學, 2 ed.: 合記圖書出版社, 2012.
[45] J. Li, A. S. Fok, J. Satterthwaite, and D. C. Watts, "Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation," Dent Mater, vol. 25, pp. 582-8, May 2009.
[46] S. J. Schambach, S. Bag, L. Schilling, C. Groden, and M. A. Brockmann, "Application of micro-CT in small animal imaging," Methods, vol. 50, pp. 2-13, Jan 2010.
[47] A. Thompson, I. Maskery, and R. K. Leach, "X-ray computed tomography for additive manufacturing: a review," Measurement Science and Technology, vol. 27, p. 072001, 2016.
[48] A. Neves Ade, E. Coutinho, M. Vivan Cardoso, S. V. Jaecques, and B. Van Meerbeek, "Micro-CT based quantitative evaluation of caries excavation," Dent Mater, vol. 26, pp. 579-88, Jun 2010.
[49] W. Semmler and M. Schwaiger, Molecular Imaging I vol. 185/I: Springer, 2008.
[50] W. Zou, N. Hunter, and M. V. Swain, "Application of polychromatic microCT for mineral density determination," J Dent Res, vol. 90, pp. 18-30, Jan 2011.
[51] K. Laperre. (2016). Analysis of bone by micro-CT General information.
[52] Q. Zhang, P. D. Lee, R. Singh, G. Wu, and T. C. Lindley, "Micro-CT characterization of structural features and deformation behavior of fly ash/aluminum syntactic foam," Acta Materialia, vol. 57, pp. 3003-3011, 2009.
[53] 張書瑋, "使用高解析度電腦斷層掃描儀量化評估牙齒之礦物質密度," 碩士, 醫學工程研究所, 國立成功大學, 台南, 2011.
[54] M. N. Hegde, P. Hegde, S. Bhandary, and K. Deepika, "An evalution of compressive strength of newer nanocomposite: An in vitro study," J Conserv Dent, vol. 14, pp. 36-9, Jan 2011.
[55] A. H. Atiyah and L. M. Baban, "Fracture resistance of endodontically treated premolars with extensive MOD cavities restored with different composite restorations (An In vitro study)," J Bagh College Dentistry, vol. 26, pp. 7-15, 2014.
[56] K. H. Al-Samadani, "Effect of energy drinks on the surface texture of nanoflled composite resin," JCDP, vol. 14, pp. 830-835, 2013.
[57] M. Quaid Al Qahtani, S. Saleh Binsufayyan, H. Awadh A Al Shaibani, and H. Gharman L Amri, "Effect of immersion media on sorption and solubility of different tooth-colored restoratives," Pakistan Oral & Dental Journal, vol. 32, 2012.
[58] J. Chittem, G. S. Sajjan, and M. Varma Kanumuri, "Spectrophotometric Evaluation of Colour Stability of Nano Hybrid Composite Resin in Commonly Used Food Colourants in Asian Countries," J Clin Diagn Res, vol. 11, pp. ZC61-ZC65, Jan 2017.
[59] J. H. Kim, S. H. Park, J. W. Park, and I. Y. Jung, "Influence of post types and sizes on fracture resistance in the immature tooth model," J Kor Acad Cons Dent, vol. 35, pp. 257-266, 2010.
[60] 洪新富, "不同複合樹脂材料對牙科二級填補的依時性機械行為之影響," 碩士, 機械工程研究所, 國立成功大學, 台南, 2013.
[61] S. Y. Fu, X. Q. Feng, B. Lauke, and Y. W. Mai, "Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites," Composites Part B: Engineering, vol. 39, pp. 933-961, 2008.
[62] C. F. Han, B. H. Wu, C. J. Chung, S. F. Chuang, W. L. Li, and J. F. Lin, "Stress-strain analysis for evaluating the effect of the orientation of dentin tubules on their mechanical properties and deformation behavior," J Mech Behav Biomed Mater, vol. 12, pp. 1-8, Aug 2012.
[63] K. J. Chun, H. Choi, and J. Lee, "Comparison of mechanical property and role between enamel and dentin in the human teeth," J Dent Biomech, vol. 5, p. 1758736014520809, 2014.
[64] J. H. Kinney, S. J. Marshall, and G. W. Marshall, "The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature," Crit Rev Oral Biol Med, vol. 14, pp. 13-29, 2003.
[65] 陳思妤, "牙科第五級複合樹脂填補的聚合收縮表現之探討," 碩士, 機械工程研究所, 國立成功大學, 台南, 2014.
[66] T. Wierzbicki, T. El-Bialy, S. Aldaghreer, G. Li, and M. Doschak, "Analysis of orthodontically induced root resorption using micro-computed tomography (Micro-CT)," Angle Orthod, vol. 79, pp. 91-96, Jan 2009.
[67] Y. C. Chen and A. Fok, "Stress distributions in human teeth modeled with a natural graded material distribution," Dent Mater, vol. 30, pp. e337-48, Dec 2014.
[68] M. P. Walker, H. K. Teitelbaum, J. D. Eick, and K. B. Williams, "Effects of simulated functional loading conditions on dentin, composite, and laminate structures," J Biomed Mater Res B Appl Biomater, vol. 88, pp. 492-501, Feb 2009.
[69] A. A. Abouhussien and A. A. A. Hassan, "Detection of bond failure in the anchorage zone of reinforced concrete beams via acoustic emission monitoring," Smart Materials and Structures, vol. 25, p. 075034, 2016.
校內:2022-06-30公開