| 研究生: |
曾建文 Tseng, Chien-Wen |
|---|---|
| 論文名稱: |
以電漿誘導接枝法製備兩性膜應用於電解水產氫之研究 Preparation of Bipolar Membranes by Plasma-induced Polymerization Method applied to Hydrogen Production from Water Electrolysis |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 兩性膜 、電漿誘導接枝法 、電解水產氫 |
| 外文關鍵詞: | bipolar membrane, grafted polymerization, plasma modification, water electrolysis |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用兩性膜(Bipolar membrane)獨特的電場加強水解離特性,應用於電解水產氫的實驗,透過本實驗室開發的電漿誘導接枝法,將陰陽離子型單體N,N-Dimethyl amino ethyl acrylate (DMAEA)以及4-Styrene sulfonic acid sodium salt hydrate (SSS)分別誘導接枝在PVDF膜形成DMAEA-PVDF-SSS兩性膜。經SEM、FTIR-ATR以及接觸角的分析結果顯示,於PVDF兩側接枝的陰陽離子層均勻地覆蓋在膜表面,兩側的層厚分別為3.2μm和2.8μm。利用電化學特性分析顯示,DMAEA-PVDF-SSS兩性膜的強化電場作用,在25℃下可將水解離成H+ 與OH- 的電位降低至0.94 V;在65℃下可將水解離成H+ 與OH- 的電位降低至0.75 V。進一步的將DMAEA-PVDF-SSS兩性膜、商業膜(Astom Co. Ltd.)以及PES(模擬純水解離)分別當作隔膜進行電化學分析,藉由量測工作電位、穩定狀態電流密度、產氫氣效率和能量消耗來比較三種膜在電解水產氫的表現。定電流的分析中,DMAEA-PVDF-SSS兩性膜比其它兩個薄膜更具有降低工作電位的效果,89.8%產氫氣效率與6.68 (kWh/m3)能量消耗皆為最佳表現;定電壓的分析中,DMAEA-PVDF-SSS兩性膜可提高電解水的電流密度,顯示出本研究製備的兩性膜能提高單位時間膜內所流經過的電荷量,電流密度越大,其電子流也越大,電子可提供給H+進行還原反應,增加產氫氣體積,進而降低能量消耗。溫度提高也可降低臨界電位,且水解離反應為吸熱反應,提高操作溫度可提供更多的能量,解離出更多的H+與OH-,以PES膜產生1Nm3 H2能量消耗為基準,在30℃下,DMAEA-PVDF-SSS兩性膜當作隔膜可以節省約17% - 43%的能量;在65℃下,使用DMAEA-PVDF-SSS兩性膜當作隔膜可以節省約7.4% - 16%的能量。DMAEA-PVDF-SSS兩性膜之穩定狀態電流密度、產氫氣效率和能量消耗皆優於商業膜(Astom Co. Ltd.)以及PES膜。將電解液從弱鹼系統更換至強酸強鹼系統,增加導電性且電解液本身不需通過中間的兩性膜電解,即可自身解離產生H+及OH-,可直接在陰陽極產生氧化還原反應,陽極端會產生兩個化學反應,一為強鹼自身解離OH-發生氧化反應,另一個為中間層的水解離反應。強酸強鹼系統相較於弱鹼系統,增加產氫氣效率約為2.7% - 7.7 %,節省約3.5% - 7.5%的能量。提高電解液濃度有助於增加導電性,在0.1M NaOH/HCl系統下,產氫氣效率約70.6% - 93.1%;在0.5M NaOH/HCl系統下,產氫氣效率約92.2% - 97.4%,大幅提升產氫氣效率,並且節省4.3% - 23.4%的能量。綜合以上改變電解水產氫實驗參數的結果顯示,本研究的DMAEA-PVDF-SSS兩性膜具有傑出的電解水效率與低能耗,具有商業化的價值。
In this study, the specific effect of electrical field-enhanced water dissociation by using the bipolar membrane, which is applied to the experiment of hydrogen production from water electrolysis. Through the plasma induced grafting method developed by our laboratory, the anionic and cationic monomer N,N-Dimethyl amino Ethyl acrylate (DMAEA) and 4-Styrene sulfonic acid sodium salt hydrate (SSS) induced respectively grafting on PVDF membrane to form DMAEA-PVDF-SSS bipolar membrane. The analysis results of SEM, FTIR-ATR and contact angle show that the anion and cationic layers grafted on both sides of PVDF cover the membrane surface uniformly, and the layer thickness on both sides is 3.2 μm and 2.8 μm, respectively. The analysis of the electrochemical characteristics shows that the DMAEA-PVDF-SSS bipolar membrane enhance electric field effect. The critical voltage of water splitting to H+ and OH- could reduce to 0.94 V at 25°C and reduce to 0.75 V at 65°C by using the bipolar membrane. Further, the DMAEA-PVDF-SSS bipolar membrane, commercial membrane (Astom Co. Ltd.) and PES (simulated pure water dissociation) were used for electrochemical analysis, by measuring the cell voltage, steady-state current density, hydrogen production efficiency and energy consumption are used to compare the performance of the three membranes in producing hydrogen from water electrolysis. In the analysis of fixed current, the DMAEA-PVDF-SSS bipolar membrane has a lower cell voltage than the other two. 89.8% hydrogen production efficiency and 6.68 (kWh/m3) energy consumption are the best performance; at a fixed voltage analysis, the DMAEA-PVDF-SSS bipolar membrane can increase the current density of water electrolysis, showing that increase the amount of charge flowing through the membrane per unit time. The greater the current density, the greater the electron flow. The electrons can be supplied to H+ for the reduction reaction, increasing the volume of hydrogen produced, thereby reducing energy consumption. Increasing the temperature can also reduce the critical voltage, and the water electrolysis reaction is endothermic. Increasing the operating temperature can provide more energy to dissociate more H+ and OH-. Based on the energy consumption of 1Nm3 H2 produced by the PES membrane, the DMAEA-PVDF-SSS bipolar membrane can save about 17%-43% of energy consumption at 30℃ and 7.4%-16% of energy consumption at 65 ℃. Regardless of the steady-state current density, hydrogen production efficiency and energy consumption, DMAEA-PVDF-SSS bipolar membranes are superior to commercial membranes (Astom Co. Ltd.) and PES membranes. Replace the electrolyte from a weak base system to a strong acid and strong base system to increase conductivity and the electrolyte does not need to be electrolyzed through the bipolar membrane to dissociate H+ and OH-, which can directly produce redox reactions at the cathode and anode. Two chemical reactions will occur at the anode, one is that the strong base dissociates OH- by itself, and the other is the electrolysis reaction through the middle layer. Compared with the weak base system, the strong acid and strong base system increases the hydrogen production efficiency about 2.7%-7.7% and saves about 3.5%-7.5% of energy consumption. Increasing the electrolyte concentration helps increase electrical conductivity. In the 0.1M NaOH/HCl system, the hydrogen production efficiency is about 70.6%-93.1%; In the 0.5M NaOH/HCl system, the hydrogen production efficiency is about 92.2%-97.4%, which enhanced greatly to improve the hydrogen production efficiency, and save 4.3%-23.4% of energy consumption. Based on the above results of changing the experimental parameters from water electrolysis, due to the outstanding electrolysis efficiency and low energy consumption, the DMAEA-PVDF-SSS biploar membrane in this study has commercial value.
1. Emanuele Taibi and Raul Miranda (IRENA), Wouter Vanhoudt, Thomas Winkel, Jean-Christophe Lanoix and Frederic Barth (Hinicio), Technology outlook for the energy transition, International Renewable Energy Agency, 2018.
2. S. Dunn, Hydrogen futures: toward a sustainable energy system, Hydrogen Energy, 2002. 27: p.235-264.
3. 劉彥甫, 從世界能源趨勢 思考臺灣風電未來, 台灣歐洲聯盟協會, 2019.
4. 李聖德, 利用電漿誘導接枝法製備兩性膜於電解產氫之研究, 成大化工所博士論文, 2010.
5. 毛宗強, 毛志明, 余皓, 製氫工藝與技術, 化學工業出版社, 2018.
6. 洪哲文, 燃料電池產業技術發展對空氣污染減量影響研究, 環保署/國科會空污防制科研合作計畫, 2005.
7. G. Cipriani, V. Di Dio, F. Genduso, D. La Cascia, R. Liga, R. Miceli, et al., Perspective on hydrogen energy carrier and its automotive applications, Int. J. Hydrogen Energy, 2014. 39: p. 8482–8494.
8. S. Dunn, Hydrogen futures: toward a sustainable energy system, Int. J. Hydrogen Energy, 2002. 27: p. 235–264.
9. K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci, 2010. 36: p. 307–326.
10. S. Shiva Kumar, S.U.B. Ramakrishna, S. Vijaya Krishna, K. Srilatha, B. Rama Devi, V. Himabindu, Synthesis of Titanium (IV) oxide composite membrane for Hydrogen Production through alkaline water electrolysis, South African, J. Chem. Eng, 2018. 25: p. 54–61.
11. S. Shiva Kumar, S.U.B. Ramakrishna, D. Srinivasulu Reddy, D. Bhagawan, V. Himabindu, Synthesis of Polysulfone and zirconium oxide coated asbestos composite separators for alkaline water electrolysis, Int. J. Chem. Eng. Process Technol, 2017. 3: p. 1035/1-6.
12. M. Ni, M.K.H. Leung, D.Y.C. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), Int. J. Hydrogen Energy, 2008. 33: p. 2337–2354.
13. M.A. Laguna-Bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: a review, J. Power Sources, 2012. 203: p. 4–16.
14. A. Kadier, Y. Simayi, P. Abdeshahian, N. Farhana Azman, K. Chandrasekhar, Md. Sahaid Kalil, A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production, Alexandria Eng. J, 2016. 55: p. 427–443.
15. A. Kadier, Md. Sahaid Kalil, P. Abdeshahian, K. Chandrasekhar, A. Mohamed, N. Farhana Azman, W. Logroño, Y. Simayi, A. Abdul Hamid, Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals, Renewable Sustainable Energy Rev, 2016. 61: p. 501–525.
16. M. Foteini Sapountzi, M. Jose Gracia, C.J. (Kees-Jan) Weststrate, O.A. Hans Fredriksson, J.W. (Hans) Niemantsverdriet, Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas, Prog. Energy Combust. Sci, 2017. 58: p. 1–35.
17. A.S. Arico, S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, V. Antonucci, Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources, J. Appl. Electrochem, 2013. 63: p. 107–118.
18. S. Trasatti, Water electrolysis: who first, J. Electroanal. Chem, 1999. 479: p. 90–91.
19. M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems, Int. J. Hydrogen Energy, 2008. 33: p. 4013–4029.
20. M. Carmo, L. David Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 2013. 38: p. 4901–4934.
21. A. Ursua, L.M. Gandia, P. Sanchis, Hydrogen production from water electrolysis: current status and future trends, Proc. IEEE, 2012. 100(2) : p. 410–426.
22. S. Seetharamana, R. Balaji, K. Ramya, K.S. Dhathathreyan, M. Velan, Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers, Int. J. Hydrogen Energy, 2013. 38: p. 14934–14942.
23. P.H. Vermeiren, W. Adriansens, J.P. Moreels, R. Leysen, Evaluation of the Zirfon separator for use in alkaline water electrolysis and Ni-H2 batteries, Int. J. Hydrogen Energy, 1998. 23: p. 321–324.
24. D. Burnat, M. Schlupp, A. Wichser, B. Lothenbach, M. Gorbar, A. Züttel, U.F. Vogt, Composite membranes for alkaline electrolysis based on polysulfone and mineral fillers, J. Power Sources , 2015. 291: p. 163–172.
25. S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, et al., Advanced alkaline water electrolysis, Electrochim. Acta, 2012. 82: p. 384–391.
26. S. Shiva Kumar, V. Himabindu, Hydrogen production by PEM water electrolysis – A review, Materials Science for Energy Technologies, 2019. 2: p. 442–454
27. W. Dönitz, E. Erdle, High-temperature electrolysis of water vapor-status of development and perspectives for application, Int. J. Hydrogen Energy, 1985. 10: p. 291–295.
28. W. Xu, K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance, Int. J. Hydrogen Energy, 2010. 35: p. 12029–12037.
29. A. Brisse, J. Schefold, M. Zahid, High temperature water electrolysis in solid oxide cells, Int. J. Hydrogen Energy, 2008. 33: p. 5375–5382.
30. M. Liang, B. Yu, M. Wen, J. Chen, J. Xu, Y. Zhai, Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism, J. Power Sources, 2009. 190: p. 341–345.
31. H. Liu, S. Grot, B.E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environ. Sci. Technol, 2005. 39: p. 4317–4320.
32. N.K. Rathinam, R.K. Sani, D. Salem, Rewiring extremophilic electrocatalytic processes for production of biofuels and value-added compounds from lignocellulosic biomass, in: R. Sani, N. Krishnaraj Rathinam (Eds.), Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power, Springer, Cham, 2018, pp. 229–245.
33. W.T. Grubb, Batteries with solid ion exchange electrolytes. 1. Secondary cells employing metal electrodes, J. Electrochem. Soc, 1959. 106: p. 275–278.
34. W.T. Grubb, L.W. Niedrach, Batteries with solid ion-exchange membrane electrolytes. 2. Low-temperature hydrogen-oxygen fuel cells, J. Electrochem. Soc, 1960. 107: p. 131–135.
35. J.H. Russell, L.J. Nuttall, A.P. Fickett, Hydrogen generation by solid polymer electrolyte water electrolysis, Am. Chem. Soc. Div. Fuel Chem. Preprints , 1973. 18: p. 24–40.
36. W. Xu, K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance, Int. J. Hydrogen Energy, 2010. 35: p. 12029–12037.
37. A.H. Abdol Rahim, Alhassan Salami Tijani, S.K. Kamarudin, S. Hanapi, An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport, J. Power Sources, 2016. 309: p. 56–65.
38. H.K. Jua, S. Badwalb, S. Giddey, A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production, Appl. Energy, 2018. 231: p. 502–533.
39. P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes, Renewable Sustainable Energy Rev, 2017. 67: p. 597–611.
40. S.A. Grigoriev, P. Millet, V.N. Fateev, Evaluation of carbon supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers, J. Power Sources, 2008. 177: p. 281–285.
41. S.A. Grigoriev, V.I. Porembsky, V.N. Fateev, Pure hydrogen production by PEM electrolysis for hydrogen energy, Int. J. Hydrogen Energy, 2006. 31: p. 171–175.
42. P. Millet, R. Ngameni, S.A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, et al., PEM water electrolyzers: from electrocatalysis to stack development, Int. J. Hydrogen Energy, 2010. 35: p. 5043–5052.
43. M.H.P. Santana, L.A. De Faria, Oxygen and chlorine evolution on RuO2 + TiO2 + CeO2+ Nb2O5 mixed oxide electrodes, Electrochim. Acta, 2006. 51: p. 3578–3585.
44. V. Baglio, A. Di Blasi, T. Denaro, V. Antonucci, A.S. Arico, R. Ornelas, et al., Synthesis, characterization and evaluation of IrO2-RuO2 electrocatalytic powders for oxygen evolution reaction, J New Mater. Electr. Syst, 2008. 11: p. 105–108.
45. X. Wu, J. Tayal, S. Basu, K. Scott, Nano-crystalline RuxSn1-xO2 powder catalysts for oxygen evolution reaction in proton exchange membrane water electrolysers, Int. J. Hydrogen Energy, 2011. 36: p. 14796–14804.
46. A.J. Terezo, E.C. Pereira, Preparation and characterization of Ti/RuO2-Nb2O5 electrodes obtained by polymeric precursor method, Electrochim. Acta, 1999. 44: p. 4507–4513.
47. B. Liu, C. Wang, Y. Chen, Surface determination and electrochemical behavior of IrO2-RuO2- SiO2 ternary oxide coatings in oxygen evolution reaction application, Electrochim. Acta, 2018. 264: p. 350–357.
48. R. Kotz, S. Stucki, Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media, Electrochim. Acta, 1986. 31: p. 1311–1316.
49. S. Shiva Kumar, S.U.B. Ramakrishna, B. Rama Devi, V. Himabindu, Phosphorus doped carbon nanoparticles supported palladium electrocatalyst for the hydrogen evolution reaction (HER) in PEM water electrolysis, Int. J. Ionics, 2018. 24: p. 3113–3121.
50. Donnan, F.G., Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1911. 17(14): p. 572-581.
51. Strathmann, H., et al., Theoretical and practical aspects of preparing bipolar membranes. Desalination, 1993. 90(1): p. 303-323.
52. Simons, R., Preparation of a high performance bipolar membrane. Journal of Membrane Science, 1993. 78(1): p. 13-23.
53. Bauer, B., F.J. Gerner, and H. Strathmann, Development of bipolar membranes. Desalination, 1988. 68(2): p. 279-292.
54. Mafé, S. and P. Ramírez, Electrochemical characterization of polymer ion-exchange bipolar membranes. Acta Polymerica, 1997. 48(7): p. 234-250.
55. Shimizu, K. and A. Tanioka, Effect of interface structure and amino groups on water splitting and rectification effects in bipolar membranes. Polymer, 1997. 38(21): p. 5441-5446.
56. Alcaraz, A., et al., Ion selectivity and water dissociation in polymer bipolar membranes studied by membrane potential and current–voltage measurements. Polymer, 2000. 41(17): p. 6627-6634.
57. Bassignana, I.C. and H. Reiss, Ion transport and water dissociation in bipolar ion exchange membranes. Journal of Membrane Science, 1983. 15(1): p. 27-41.
58. Simons, R., Water splitting in ion exchange membranes. Electrochimica Acta, 1985. 30(3): p. 275-282.
59. Balster, J., et al., Tailoring the interface layer of the bipolar membrane. Journal of Membrane Science, 2010. 365(1): p. 389-398.
60. Dege, G.J., et al., Method of making novel two component bipolar ion exchange membranes. Google Patents, 1981.
61. Mueller, H. and H. Puetter, Production of bipolar membranes. Google Patents, 1987.
62. Zhou, T.-j., et al., Preparation and characterization of bipolar membranes modified by photocatalyst nano-ZnO and nano-CeO2. Applied Surface Science, 2012. 258(8): p. 4023-4027.
63. Balster, J., et al., Tailoring the interface layer of the bipolar membrane. Journal of Membrane Science, 2010. 365(1): p. 389-398.
64. Lee, L.T. and K.-J. Liu, Stable high performance bipolar membrane with cross-linked functional groups. 1982, Google Patents.
65. Hegazy, E.-S.A., et al., Membranes prepared by radiation grafting of binary monomers for adsorption of heavy metals from industrial wastes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999. 151(1): p. 386-392.
66. Tang, B.Z., et al., Structure−Property Relationships for Photoconduction in Substituted Polyacetylenes. Chemistry of Materials, 2000. 12(1): p. 213-221.
67. Fu, R., et al., Preparation of a mono-sheet bipolar membrane by simultaneous irradiation grafting polymerization of acrylic acid and chloromethylstyrene. Journal of Applied Polymer Science, 2003. 90(2): p. 572-576.
68. Yokoyama, Y., A. Tanioka, and K. Miyasaka, Preparation of a single bipolar membrane by plasma-induced graft polymerization. Journal of Membrane Science, 1989. 43(2): p. 165-175.
69. 林愛光, 蔣維鈞, 余立新, 膜科學與技術, 1998. 18 (5) :24-27.
70. 林濤, 余立新, 化學工程, 2002. 30(3): p. 58-61.
71. Senad Novalic, Teeraporn Kongbangkerd, Klaus D, Kulbe, et al, Journal of Membrane Science, 2000. 166: p. 99-104.
72. Hong Li, Roberta Mustacchi, Christopher, et al, Tetrahedron, 2004. 60: p. 655-661.
73. Rathin Datta, Shih Perng Tsai, Patrick Bonsignore, et al, PEMS Microbiology Reviews, 1995. 16: p. 221-231.
74. Yu Lixin, Guo Qingfeng, Hao Jihua, et al, Desalination, 2000, 129: p. 283-288.
75. Liu K J, Chlanda F P, Nagsubramanian K. A, Journal of Membrane Science, 1978. 3: p. 57-70.
76. Liu KJ, Nagsubramanian K, Chlanda F P, Journal of Membrane Science, 1978. 3: p. 71-83.
77. 余立新, 孟昭輝, 林愛光, 環境科學, 1996. 17 (6 ) : p. 40-42.
78. 李福勤, 楊雲龍, 李清雪等, 中國給水排水, 2001. 17 (10) : p. 74-76.
79. Chao Y C, Chlanda F P, Mani K N, Journal of Membrane Science, 1991. 61: p. 239-252.
80. Cauwenberg V, Peels J, Resveut S, Separation Purification Technology, 2001. 22: p. 115-121.
81. Bazinet L, Lamarche F, Ippersiel D, Trend in Food Science & Technology, 1998. 9: p. 107-113.
82. Edwin Vera, Jenny kuales, Manusl Dornier, Journal for Food Engineering, 2003. 59: p. 361-367.
83. 徐銅文, 孫樹聲, 劉兆明等, 化工進展, 2001. 20 (6): p. 20-24.
84. Richard B W, Mukhtar H, Journal of Membrane Science, 1996. 112: p. 263-274
85. Toshinori T, Shin ichi N, Shioji K, Journal of Membrane Science, 1995. 108: p. 269-278.
86. 陳文, 引用活性離子水, 中國青年報, 1998.
87. Walther J, Skaneateles N Y. Process for Production of Electrical Energy From the Neutralization of Acid and Base in a Bipolar Membrane Cell, US 4311771, 1982.