簡易檢索 / 詳目顯示

研究生: 郭正鏞
Kuo, Cheng-Yung
論文名稱: 氣液固法成長矽奈米線及其應用於奈米感測器和混合式有機、奈米太陽能電池
Vapor-Liquid-Solid Growth of Silicon Nanowires and Its Applications in Nanosensor, Hybrid Organic and Nanostructure Solar Cell
指導教授: 高騏
Gau, Chie
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 148
中文關鍵詞: 矽奈米線氣液固法氣固固法奈米太陽能電池奈米感測器混合式有機
外文關鍵詞: Silicon Nanowire, Vapor-Liquid-Solid, Vapor-Solid-Solid, Nanostructure Solar Cell, Nanosensor, Hybrid Organic
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中一維的矽奈米線利用氣液固態的化學氣相沉積法來製備,製備奈米線的過程中使用量產型的6”低壓爐管,此方法可以藉由金觸媒來定義成長的位置跟條件,並可以大面積化的成長於選擇的基板上。
    奈米等級下的矽奈米線,受限於黃光微影製程上線寬的限制,所以在定義奈米線的技術上,在本研究中,利用了光阻熱回流法跟陽極氧化模板兩種方法來分別定義出單根,並正交於基板的矽奈米線。在光阻熱回流法的研究中,可以將5微米大小的孔洞縮小至次微米大小(500奈米),而縮小的孔洞可再藉由濕蝕刻的異向性蝕刻特性,而形成尺寸較小的V凹槽,此凹槽的是利於沉積少量的奈米金粒子,並且長出單根的矽奈米線;另外,在利用陽極氧化模板定義奈米線的成長過程中,發現了利用陽極氧化模板除了可以定義矽奈米線的成長方向外,同時降低了成長奈米線所需的溫度(350OC),其成長的機制也由一般常見的氣液固法變成氣固固法,提供了低溫成長矽奈米線的新方法,並對成長理論加以探討。
    本質性的矽奈米線,可以經磷離子的掺雜而形成N型特性,其中N型單根矽奈米線其電性跟機械性質(楊氏系數跟硬度),分別被量測出來。在電性的量測上,分別利用SEM裡探針的(奈米操作技術)跟(電極的下接觸)兩種方式,量測得到單根矽奈米線的電阻特性並加以比較;而其機械性質的量測可以利用奈米壓痕機來掃瞄定位及量測。並將N型矽奈米線滴定在可撓的基材形成導電的網絡,探討其對氣體壓力的感測變化。
    此外,在奈米線表面的濕潤性研究中發現,極親水(接觸角=0O)的矽奈米線在低壓下可以吸附PDMS來達成超疏水(接觸角>170O)的現象,而如此的疏水現象可以再藉由600OC的熱處理來回覆到親水的表面,藉由低壓及高溫的處理,矽奈米線表面的濕潤性是可逆的、及可重覆的。
    在太陽能電池的應用上,將矽奈米線成長在氧化銦錫玻璃表面,應用於混合式(有機/無機)太陽能電池,矽奈米線可以提供的電子的傳輸路徑,並可以提升元件的光電轉換效率;另外在無機太陽能元件的應用上,矽奈米線是極佳的抗反射結構,成長在矽基材上所形成的太陽能電池,可以提升對光的有效吸收,但相對於糙化及平面的太陽能電池效率還是較低,因此結合擁有良好導電性的單壁奈米碳管於此元件上,藉此提昇電流的收集,效率可由3.686%提升到4.507%。而新穎的矽奈米線的應用,希望可以提供相關工程或科學研究上更有潛力的發展。

    In this investigation, fabrication of Silicon nanowires (SiNWs) is used with a Vapor-Liquid-Solis growth process by 6” low pressure chemical vapor deposition system. This method can define the location of growth by gold catalyst and it grows large area on which one selected substrates.
    About the SiNWs for nano scales, indicating locations of SiNWs have width limited for fabrication of photolithography. In this work, thermal reflow of photorestist and anodic aluminum oxide (AAO) template offer two different methods to define individual SiNW that grow perpendicularly on the substrates. Within the reflow process, the 5um of pores can decrease size to submicron (500 nm), moreover decreased pores could be etched to form smaller V grooves by anisotropic character of wet etching. The fabrication of V grooves by this method is convenient to deposit a little bit of gold particles and grow single SiNW. Another method, synthesis of SiNWs by AAO template not only offer growth direction and can decrease temperature of growth to 350OC. Therefore, assist synthesis of SiNWs by AAO template which mechanism of commonly VLS would transfer to vapor-solid-solid (VSS). And synthesis theory would be discussed detailly.
    The intrinsic SiNWs could be doped by phosphorous to transfer to N type, in which electric and mechanical properties of individual n-doping SiNW are demonstrated respectively. In the electricity, measurement of resistance can be gain by nanomanipulator of SEM and bottom contact method, and then discussed more. Moreover, measurement of mechanical properties could be gain by nano indenter. Conducting network formed by dipped coating of N-type SiNWs on flexible substrates, and its sensitivity of gas pressure would be discussed.
    The superhydrophilicity of the SiNWs surface can be transfer into superhydrophobic by a vacuum treatment which is a low pressure diffusion process by vapor form polydimethylsiloxane (PDMS) material. In addition, superhydrophobicity of the surface can be readily reversible back to superhydrophilicity by 600OC annealing. The reverse nature of surface wettability can be repeated for many cycles by alternating vacuum with thermal treatment.
    About applications of solar cells, Silicon nanowires (SiNWs) arrays grew vertically on an indium tin oxide glass substrate make into a hybrid solar cell, with a structure of glass/ITO /SiNWs/PCBM/P3HT/Au. Much higher efficiency for solar cell embedded with nanowire arrays is attributed to nanowires which provide a better transport path for electron hole pairs before recombination; In addition, SiNW arrays also apply in inorganic solar cell. The SiNW arrays is an the excellent anti-reflecting structure, thus the SiNWs based solar cell can expect to raise efficient absorption. However, the efficiency comparison with planar or texture structure solar cell is still lower. Therefore, we selecte better conducting material of SWNT is applied in SiNWs based solar cell which efficiency is from 3.686% to 4.507%. Therefore, applications of novel SiNWs are expected to potential investigations in engineering and sciences.

    ABSTRACT IN CHINESE I ACKNOWLEDGEMENT III ABSTRACT XI LIST OF TABLES XV LIST OF FIGURES XVI NOMENCLATURE XXIII CHAPTER 1 Introduction 1 1.1 One-dimensional nanostructure 1 B. Bottom-up 2 1.2 Fabrication of silicon nanowires 2 A. Vapor-Liquid-Solid grow SiNWs 2 B. Laser ablation grow SiNWs 3 C. The electrochemical fabrication of large-area arrays of SiNWs (Etching) 4 D. the other relative fabrication of SiNWs 4 1.3 The growth direction of SiNWs 5 1.4 Objectives 5 2 Synthesis of Silicon Nanowires, And Well Aligned Structures by Thermal Reflow of Photoresist 7 2.1 Brief introduction 7 2.2 Fabrication of Au nanoparticles and catalyst of VLS deposition 7 2.3 Synthesis and Characterization of SiNWs 8 2.4 Growth of well align SiNWs by reflow of photoresist 12 2.5 Fabrication of sub-micro scale V cavity by thermal reflow and definite the SiNWs 14 2.6 Summary 15 3 Design and Fabrication of SiNWs Nanosensor Devices 16 3.1 Brief introduction 16 3.2 Pattern of polycrystalline Si electrode 16 3.3 Electrical properties of individual SiNW 17 A. Dipped and deposited the individual SiNW on the spread gold electrode 17 B. Mainpulated the mechanical tip and measurement 17 3.4 Mechanical properties of individual SiNW 18 3.5 Nanosensor of SiNWs network fim 19 3.6 Summary 19 4 Vapor-solid-solid growth of crystalline silicon nanowires using anodic aluminum oxide template 21 4.1 Brief introduction 21 4.2 Fabrication of the AAO template and Growth of the SiNWs 22 4.3 Discussion of vapor-solid-solid growth 24 4.4 Summary 27 5 Reversible Control of Superwetting Silicon Nanowires Surface 28 5.1 Brief introduction 28 5.2 Experiment and method 30 5.3 Results and discussion 32 5.4 Summary 39 6 Arrangement of band structure for organic-inorganic photovoltaics embeddd with silicon nanowire arrays 40 6.1 Brief introduction 40 6.2 Synthesis silicon nanoeire arrays grown on ITO glass for organic-inorganic photovoltaics 41 6.3 Summary 46 7 Photovoltaic Characteristics of Silicon Nanowire Arrays 47 7.1 Brief introduction 47 7.2 Synthesis of n-doping SiNWs on p-type silicon for photovoltaic Characteristics 48 7.3 The optimum photovoltaic characteristics of SiNWs solar cell 51 7.4 SWNT electrode synthesized and applied in SiNW based Solar cell 53 7.5 Summary 54 8 Conclusion 56 (a) photolithography by thermal reflow of photoresist 56 (b) Using anodic aluminum oxide template 56 (1) Reversible control of Wettability 57 (2) For organic-inorganic photovoltaics embeddd with silicon nanowire arrays 57 (3) Photovoltaic Characteristics of Silicon Nanowire Arrays synthesized 57 REFERENCES 132 VITA 145 PUBLICATION LIST 146

    [1.1] Iijima, S.,1991, “Helical Microtubuless of Graphitic Carbon,” Nature, 354, pp.56-58.
    [1.2] Yin, Y., Gates, B., and Xia, Y., 2002, “A Soft Lithography Approach to the Fabrication of Nanostructures of Single Crystalline Silicon with Well-Defined Dimensions and Shapes,” Adv. Mat., 12, pp.1426-1430.
    [1.3] Hsu, C. H., Lo, H. C., Chen, C. F., Wu, C. T., Hwang, J. S., Das, D., Tsai, J. Chen, L. C., and Chen, K. H., 2004, “Generally Applicable Self-Masked Dry Etching Technique for Nanotip Array Fabrication,” Nano Lett., 4, pp.471-475.
    [1.4] Perea, D. E., Hemesath, E. R., Schwalbach, E. J., Lensch-Falk, J. L., Voorhees, P. W., and Lauhon, L. J., 2009, “Direct measurement of dopant distribution in an individual vapor-liquid-solid nanowire,” Nature Nano., 4, pp.315-319.
    [1.5] Garnett, E. C., Tseng, Y.C., Khanal, D. R., Wu, J., Bokor, J., and Yang, P., 2009, “Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements,” Nature Nano., 4, pp.311-314
    [1.6] Park, W. I., Zheng, G., Jiang, X., Tian, B., and Leiber, C. M., 2008, “Controlled Synthesis of Milimeter-Long Silicon Nanowires with Uniform Electronic Properties,” Nano Lett., 8, pp.3004-3009.
    [1.7] Zhou, X. T., Hu, J. Q., Li, C. P., Ma, D. D. D., Lee, C. S., and Lee, S. T., 2003, “Silicon mamowires as chemical sensors,” Chem. Phys. Lett., 369, pp.220-224.
    [1.8] Cui, Y., Wei, Q., Park, H. Lieber, C. M., 2001, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, 293, pp.1289-1292.
    [1.9] Mcalpine, M. C., Ahmad, H., Wang, D., J. R. Heath, 2007, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nature Mat., 6 pp.379-384.
    [1.10] Goldberger, J., Hochbaum, A. I., Fan, R., and Yang, P., 2006, “Silicon Vertically Integrated Nanowire Field Effect Transistors,” Nano Lett., 6, pp.973-977.
    [1.11] Quitoriano, N. J., and Kamins, T. I., 2008, “Integratable Nanowire Transistors,” Nano Lett., 8, pp.4410-4414
    [1.12] Huang, Y., Duan, X., Cui, Y., Lauhon, L. J., Kim, K. H., and Leiber, C. M., 2001, “Logic Gates and Computation from Assembled Nanowire Building Block,” Science, 294, pp.1313-1316.
    [1.13] Cui, Y. and Leiber, C. M., “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291 pp.851-853.
    [1.14] McAlpine, M. C., Friedman, R. S. Jin, S., Lin, K. H., Wang, W. U., and Lieber, C. M., 2003, “high-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates,” Nano Lett., 3, pp.1531-1535.
    [1.15] Reza, S., Bosman, G., Islam, M. S., Kamins, T. I., Sharma, S., and Williams, R. S., 2006, “Noise in Silicon Nanowires,” IEEE Tran. Nanotechnology, 5, pp.523-529.
    [1.16] Gangloff, L., Minous, E., Teo, K. B. K., Vincent, P., Semet, V. T. Binh, V. T., Yang, M. H., Bu, I. Y. Y., Lacerda, R. G., Pirio, G.., Schnell, J. P., Pribat, D., Hasko, D. G., Amaratunga, G. A. J., Milne, W. I., and Legagneux, P., 2004, “Self-Aligned, Gated arrays of individual Nanotube and Nanowire Emitters,” Nano Lett., 4, pp.1575-1578.
    [1.17] Kempa, T. J., Tian, B., Kim, D. R., Hu, J., Zheng, X., and Lieber, C. M., 2008,”Single and Randem Axial p-i-n Nanowire Photovoltaic Devices,” Nano Lett., 8 pp.3456-3460
    [1.18] Peng, K, Wang, X., and Lee, S. T., 2008, ”Silicon nanowire array photoelectrochemical solar cells,” App. Phys. Lett., 92, 163103.
    [1.19] Schmidt, V., Senz, S., and Gosele, U., 2005, “Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires,” Nano Lett., 5, pp.931-935.
    [1.20] Hannon, B., Kodambaka, S., Ross, F. M., and Tromp, R. M., 2006, “The influence of the surface migration of gold on the growth of silicon nanowires,” Nature, 440, pp.69-71.
    [1.21] Cao, L., Garipcan, B., Atchison, J. S., Ni, C., Nabet, B., and Spanier, J. E., 2006,”Instability and Transport of Metal Catalyst in the Growth of Tapered Silicon Nanowires,” Nano Lett., 6, pp.1852-1857.
    [1.22] Wagner, R. S. and Ellis, W. C., 1964, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett, 4, pp.89-90.
    [1.23] Wang, Y., Schmidt, V., Senz, S., and Gosels, U., 2006, “Epitaxial growth of silicon nanowires using an aluminium catalyst,” Nature Nano., 1, pp.186-189.
    [1.24] Guozhong Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, ICP, 2004.
    [1.25] Fan, H. J. Werner, P., and Zacharias, M., 2006, “Semiconductor Nanowires: From Self-Organization to Patterned Growth.” Small, 2, pp.700-717.
    [1.26] Tang, Y. H., Zhang, Y. F., Wang, N. Lee, C. S., Han, X. D., Bello, I. and Lee, S. T. 1999, “Morphology of Si nanowires synthesized by-high-temperature laser ablation,” J. of App. Phys., 85, pp.7981-7893.
    [1.27] Zhang, Y. F., and Tang, Y. H., Peng, H. Y., Wang, N., Lee, C. S., Bello, I., and Lee, S. T., 1999, “Diameter modification of silicon nanowires by ambient gas,” App. Phys. Lett., 75, pp.1842-1844.
    [1.28] Guo, T., Nikolaev, P., Rinzler, A. G., Tomanek, D., Colbert, D. T., and Smalley, R. E., 1995, “Self-Assembly of Tubular Fullerenes,” J. Phys. Chem., 99, pp.10694-10697.
    [1.29] Peng, K. Q., Yan, Y. J., Gao, S. P., and Zhu, J., 2002, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mat., 14, pp.1164-1167.
    [1.30] Peng, K., Hu, J., Yan, Y., Wu, Y., Fang, H., Xu, Y., Lee, S. T., and Zhu, J., 2006, “Fabication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles,” Adv. Fun. Mat., 16, pp.387-394.
    [1.31] Yao, Y., Li, F., and Lee, S. T., 2005, “Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalyst,” Chem. Phys. Lett., 406, pp.381-385.
    [1.32] Zou, M., Cai, L., Wang, H., and Xu, J., 2006, “Silicon Nanowires by Aluminum-Induced Crystallization of Amorphous Silicon,” Electrochem. Solid-Stat Lett., 9, pp.G31-G33.
    [1.33] Schmidt, V., Senz, S., and Gosele, U., 2005, “Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires,” Nano Lett., 5, pp.931-935.
    [1.34] Saifislam, M., Sharma, S., Kamins, T. I., Williams, R. S., 2005, “A novel interconnection technique for manufacturing nanowire devices,” App. Phys. A, 80, pp.1133-1140.
    [1.35] Kamins, T. I., Sharma, S., Islam, M. S., and Williams, R. S., 2005, “Metal-Catalyzed Silicon Nanowires: Control and Connection,” Proceeding 2005 5th IEEE Nano., Nagoya, Japan, July 2005, Invited.
    [1.36] Islam, M. S., Sharma, S., Kamins, T. I., and Williams, R. S., 2004, “Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces,” Nanotechnology, 15, pp.L5-L8.
    [1.37] Quitoriano N. J. and Kamins, T. I., 2007, “Using pn junction depletion regions to position epitaxial nanowires,” J. App. Phys., 102, pp.044311-1-5.
    [1.38] Quitoriano, N. J. Wu, W., and kamins, T. I., 2009, “Guiding vapor-liquid-solid nanowire growth using SiO2,” Nanotechnology, 20, 145303.
    [2.1] Martebsson, T., Carlberg, P., Borgstrom, M., Montelius, L., Seifert, W., and Samuelson, L., 2004, “nanowire Arrays Defined by Nanoimprint Lithography,” Nano Lett., 4, pp.699-702.
    [2.2] Chung, S. W., Yu, J. Y., and Heath, J. R., 2000, “Silicon nanowire devices,” App’ Phys. Lett., 76, pp.2068-2070.
    [2.3] Milligan, W. O., and Morriss, R. H., 1964, “Morphology of Colloidal gold-A Comparative Study,” J. Am. Chem. Soc., 86, pp. 3461-3467.
    [2.4] Westwater, J., Gosain, D. P., Tomiya, S., and Usui, S., 1997, “Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol., 15, pp.554-557.
    [2.5] Hochbaum, A. I., Rongrui, R. F., and Yang, P., 2005, “Controlled growth of Si Nanowire Arrays for Device Integration,” Nano Lett., 5, pp.457-460.
    [2.6] Islam, M. S., Sharma, S., Kamins, T. I., and Williams, R. S., 2004, “Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces,” Nanotechnology, 15, pp.L5-L8.
    [2.7] Wang, Y., Schmidt, V., Senz, S., and Gosels, U., 2006, “Epitaxial growth of silicon nanowires using an aluminium catalyst,” Nature Nano., 1, pp.186-189.
    [2.8] Hannon, B., Kodambaka, S., Ross, F. M., and Tromp, R. M., 2006, “The influence of the surface migration of gold on the growth of silicon nanowires,” Nature, 440, pp.69-71.
    [2.9] Kodambaka, S., Hannon, J. B., Tromp, R. M., and Ross, F. M., 2006, “Control of Si Nanowire Growth by Oxygen,” Nano Lett., 6, pp.1292-1296.
    [2.10] Guozhong Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, ICP, 2004.
    [2.11] Han, J. I., and Han, C. H., 1999, “A self-Aligned Offset Polysilicon Thin-Film transistor Using Photoresist Reflow,” IEEE Electron Devicee Lett., 20, pp.476-477
    [2.12] Gangloff, L., Minous, E., Teo, K. B. K., Vincent, P., Semet, V. T. Binh, V. T., Yang, M. H., Bu, I. Y. Y., Lacerda, R. G., Pirio, G.., Schnell, J. P., Pribat, D., Hasko, D. G., Amaratunga, G. A. J., Milne, W. I., and Legagneux, P., 2004, “Self-Aligned, Gated arrays of individual Nanotube and Nanowire Emitters,” Nano Lett., 4, pp.1575-1578.
    [2.13] Blakers, A. W., and Green, M. A., 1986, “20% efficiency silicon solar cells,” Appl. Phys. Lett., 48, pp.215-217.
    [2.14] Zhao, J., Wang, A., Altermatt, P., and Green, M. A., 1995, “Twenty-four percent efficient silicon solar cells with double layer antireflection coating and reduced resistance loss,” Appl. Phys. Lett., 66, pp.3636-3638. “”
    [2.15] Cui, Y., Lauhon, L. J., Gudiksen, M. S., and Wang, J., 2001, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett., 78, pp.2214-2216.
    [3.1] Son, H., Chou, S. G., Nezich, D., Samsonidze, G. G., Dresselhaus, G., Dresselhaus, M. S., Barros, E. B., 2004, “Environment effects on the Raman spectra of individual single-wall carbon nanotubes: Suspended and grown on polycrystalline silicon,” Appl. Phys. Lett., 85, pp.4744-4746.
    [3.2] Sakurai, M., Wang, Y. G., Uemura, T., and Aono, M., 2009, “Electrical properties of individual ZnO nanowires,” Nanotechnology, 20, pp.155203,
    [3.3] Zhou, X. T., Hu, j. Q, Li, C. P., Ma, D. D. D., Lee, C. S., and Lee, S. T., 2003, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett., 369 pp.220-224.
    [3.4] O’Brien, G. A., Quinn, A. J., Tanner, D. A., and Redmond, G., 2006, “A single Polymer nanowire Photodector,” Adv. Mat., 18, pp. 2379-2383.
    [3.5] Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., and Majumdar, A., 2003, “Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett., 83, pp.2934-2936.
    [3.6] Nam, C. Y., Jaroenapibal, P., Tham, D., Luzzi, D. E., Evoy, S., and Fischer, J. E., 2006, “Diameter-Dependent Electromechanical properties of GaN Nanowires,” Nano Lett., 6, 153-158,
    [3.7] Liu, X. W., Hu, J. and Pan, B. C., 2008, “The composition-dependent mechanical properties of Ge/Si core-shell nanowires,” Phys. E, 40, pp.3042-3048,
    [3.8] Rudd, R. E., and Lee, B., 2008, “Mechanics of silicon nanowires: size-dependent elasticity from first principles,” Molecular Simulation, 34, pp.1-8.
    [3.9] Xiong, Q., Duarte, N., Tadigadapa, S., and Eklund, P. C., 2006, “Force-Deflection Spectroscopy: A New Method to Determine the Young’s Modulus of Nanofilaments,” Nano Lett., 6, pp.1904-1909.
    [3.10] Kuo, C. Y., Chan, C. L., Gau, C., Liu, C. W., Shiau, S. H., Ting, S. H., 2007, “ Nano Temperature Sensor Using Selective Lateral Growth of Carbon Nanotube Between Electrodes,” IEEE Transactions on Nanotechnology, 6(1), pp. 63-69.
    [3.11] C. Gau, Ko, H. S., and Chen, H. T., 2009, “Piezoresistive characteristics of MWNT nanocomposites and fabrication as a polymer pressure sensor,” Nanotechnology, 20, pp.185503.
    [3.12] Kuzmych, O., Allen, B. L., and Star, A., 2007, “Carbon nanotube sensor for exhaled breath components,” Nanotechnology, 18, pp.375502.
    [4.1] Schmidt, V., Senz, S., and Gosele, U., 2005, “Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires,” Nano Lett., 5, pp.931-935.
    [4.2] Hannon, B., Kodambaka, S., Ross, F. M., and Tromp, R. M., 2006, “The influence of the surface migration of gold on the growth of silicon nanowires,” Nature, 440, pp.69-71.
    [4.3] Cao, L., Garipcan, B., Atchison, J. S., Ni, C., Nabet, B., and Spanier, J. E., 2006,”Instability and Transport of Metal Catalyst in the Growth of Tapered Silicon Nanowires,” Nano Lett., 6, pp.1852-1857.
    [4.4] Wang, Y., Schmidt, V., Senz, S., and Gosels, U., 2006, “Epitaxial growth of silicon nanowires using an aluminium catalyst,” Nature Nano., 1, pp.186-189.
    [4.5] Kamins, T. I., Williams, R. S., Chen, Y., Chang, Y. L., and Chang, Y. A., 2000, “Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si,” Appl. Phys. Lett., 76, pp.562-564.
    [4.6] Mandi, B., Stangl, J., Martesssons, T., Mikkelsen, A., Eriksson, J., Karlsson, L. S., Baucer, Baucer, G., Samuelson, L., and Seifert, W., 2006, “Au-Free Epitaxial Growth of InAs Nanowires,” Nano Lett., 6, pp.1817-1821.
    [4.7] Dick, K. A., Deppert, K., Martensson, T., Mandl, B., Samuelson, L., and Seifert, W., 2005, “Failure of the Vapor-Liquid-Solid Mechanism in Au-Assisted MOVPE Growth of INAs Nanowires,” Nano Lett., 5, pp.761-764.
    [4.8] Inoue, S., Chu, S. Z., Wada, K., Li, D., and Haneda, H., 2003, “New roots formation of nanostructures on glass surface through anodic oxidation of sputterer aluminum,” Sci. Tech. Adv. Mat., 4, 269-276.
    [4.9] Maschmann, M. R., Frankin, A. D., Amama, P. B., Zakharov, D. N., Stach, E. A., Sands, T. D., and Fisher, T. S., 2006, “Vertical single-and double –walled carbon nanotubes grown from modified porous anodic alumina templates,” Nanotechnology, 17, pp.3925-3929.
    [4.10] Lew, K. K., Reuther, C., Carim, A. H., Redwing J. M., 2002, “Template-directed vapor-liquid-solid growth of silicon nanowires,” J. Vac. Sci. technol. B, 20, pp.389-392.
    [4.11] Bogart, T. E. and Dey, S., Lew, K. K., Mohney, S. E., and Redwing, J. M., 2005, “Diameter-Controlled Synthesis of Silicon Nanowires Using nanoporous Alumina Membranes,” Adv. Mater., 17, pp.114-117.
    [4.12] Lombardi, I., Hochbaum, A. I., Yang, P., Carraro, C., and Maboudian, R., 2006, “Synthesis of High Density, Size-Controlled Si nanowire Arrays via porous Anodic Alumina Mask,” Chem. Mater., 18, pp.988-991. “”
    [4.13] Liu, C. W., Kuo, C. Y., Wang, C. P., Shiau, S. H., Gau, C., Dai, B. T., 2007, “Low Aluminum Oxide Template,” Jap. J. Appl. Phys., 46, pp.6343-6345.
    [4.14] Vlad, A., Tempfli, M. M., Antohe, V. A., Faniel, S., Reckinger, N., Olbrechts, B., Crahay, A., Bayot, V., Piraux, L., Melinite, S., and Tempfli, S. M., 2008, “Nanowire-Decorated microscale metallic Electrodes,” Small, 4, pp.557-560.
    [4.15] Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., assell, A. M. And Dai, H., 1999, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, 283, pp.512-514.
    [4.16] Kuo, C. Y., Tang, W. C., Gau, C., Guo, T. F., and Jeng, D. Z., 2008, “Ordered bulk heterojunction solar cells with vertically aligned TiO2 nanorods embedded in a conjugated polymer,” Appl. Phys. Lett., 93, pp.033307.
    [4.17] H. T. M. Pham, C. R. de Boer, P. M. Sarro, Tranducers’05, 1 (2005) 97.
    [4.18] Lu, M., Li, M. K., Kong, L. B., Guo, X. Y., and Li, H. L., 2004, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays,” Composites: Part B, 35, pp.179-184.
    [4.19] Scokart, P. O., Rouxhet, P. G., 1982,”Conparsion of the acid-base properties of various oxides and chemical treated oxides,” J Colloid Interface Sci., 86 pp.96.
    [4.20] Wagner, R. S., and Ellis, W. C., 1965, “Vapor-liquid-solid mechanism of crystal growth and its application to silicon,” Trans. Met. Soc. AIME, 233 , pp.1053-1.64.
    [4.21] Givargizov, E. I., 1975, “Fundamental aspects of VLS growth,” J. Cryst. Growth, 31, pp. 20–30.
    [5.1] Genzer, J., and Efimenko, K., 2000, “Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers,” Science, 290, pp.2130-33.
    [5.2] Ichimura, K., Oh, S. K., and Nakagawa, M., 2000, “Light-Drive Motin of Liquids on a Photoresponsive Surface,” Science, 288, pp.1624-1626
    [5.3] Lahann, .J, Mitragotri, S., Tran, T. N., Kaido, H., Sundaram, J., Choi, I. S., Hoffer, S., Somorjai, G. A., and Langer, R., 2003, “A Reversibly Switching Surface,” Science, 299, pp.371-374.
    [5.4] Russell, T. P., 2003, “Surface-Responsive Materials,” Science, 297, pp.964-967.
    [5.5] Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., 1997, “Light-induced amphiphilic surfaces,” Nature, 388, pp.431-32.
    [5.6] Lo, H. C., Huang, Y. F., Chattopadhyay, S., Hsu, C. H., Chen, C. F., Chen, K. H., and Chen, L. C., 2006, “Geometrically tuned and chemically switched wetting properties of silicon nanotips,” Nanotechnology, 17, pp.2542-2545.
    [5.7] Bico, J., Thiele, U., and Quere, D., 2002, “Wetting of textured surfaces,” Colloids and Surfaces A, 206, pp.41-46.
    [5.8] Chen, S. W., Hsieh, J. C., Chou, C. T., Lin, H. H., Shen, S. C., and Tsai, M. J., 2007, “Experimental investigation and visualization on capillary and boiling limits of micro-grooves made by different processes,” Sensors and Actuators A, 139, pp.78-87.
    [5.9] Barthlott, W., and Neinhuis, C., 1997, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta, 202, pp.1-8.
    [5.10] Zhai, L., Berg, M. C., Cebeci, F. C., Kim, Y., Milwid, J. M., Rubner, M. F., and Cohen, R. E., 2006, “Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle,” Nano Lett., 6, pp.1213-1217.
    [5.11] Gleiche, M., Chi, L. F., and Fuchs, H., 2000, “Nanoscopic channel lattices with controlled anisotropic wetting” Nature, 403, pp.173-175.
    [5.12] Guo, Z. G., and Liu, W. M., 2007, “Superhydrophobic spiral Co3O4 nanorod arrays,” Appl. Phys. Lett., 90, pp.193108.
    [5.13] Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Youngblood, J., and McCarthy, T. J., 1999, “Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples,” Langmuir, 15, pp.3395-3399.
    [5.14] Hosono, E., Fujihara, S., Honma, I., and Zhou, H., 2005, “Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process,” J. Am. Chem. Soc., 127, pp.13458-13459.
    [5.15] Badre, C., Pauporte, T., Thurmine, M., and Lincot, D., 2007, “A Zno nanowire array film with stable highly water-repellent properties,” Nanotechnology, 18, pp.365705
    [5.16] Cao, L. L., Hu, H. H., and Gao, D., 2007, “Design and Fabrication of Micro-textrues for Inducing a Superhydrophobic Behavior on Hydrophilic Materials,” Langmuir, 23, pp.4310-4314.
    [5.17] Xiu, Y., Zhu, L., Hess, D. W., and Wong, C. P., 2007, “Hierarchical Silicoon Etched Structures for Controlled Hydrophobicity/Superhydrophobicity,” Nano Letters, 7, pp.3388-3393.
    [5.18] Tuteja, A., Choi, W., Ma, M., Mabry, J. M., Mazzella, S. A., Rutledge,G. C., McKinley, G. H., and Cohen, R. E., 2007, “Designing Superoleophobic Surfaces,” Science, 318, pp.1618-1622.
    [5.19] Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J., and Leiber, C. M., 2001, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett., 78, pp.2214-2216.
    [5.20] Feng, X., Feng, L., Jin, M., Zhai. J., Jiang, L., and Zhu, D., 2004, “Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned Zno Nanorod Films,” J. Am. Chem. Soc., 126, pp.62-63.
    [5.21] Sun, T., Wang, G., Feng, L., Liu, B., Ma, Y., Jiang, L., and Zhu, D., 2004, “Reversible Switching between Superhydrophilicity and Superhydrophobicity,” Angew. Chem. Int. Ed., 43, pp.357-360.
    [5.22]Sun, M., Luo, C., Xu, L., Ji, H., Ouyang, Q., Yu, D., and Chen, Y., 2005, “Artificial Lotus Leaf by Nanocasting,” Langmuir, 21, pp.89788981
    [5.23] Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, Nu., Xia, F., and Jiang, L., 2008, “Petal Effect: A Superhydrophobic State with High Adhesive Force,” Langmuir, 24, pp.4114-4119.
    [5.24] Wenzel, R. N., 1936, “Highly water repellent fluoroplaymer coating, ” Ind. Eng. Chem. 28 pp.988-994.
    [5.25] Cassie, A. B. D., and Baxter, S., 1944, “Wettability of porpous surfaces,” Trans. Faraday Soc., 40, pp.546-551.
    [5.26] Thomas, T. H., and Kendrick, T. C., 1969, “Thermal analyss of polydimethylsiloxanes, I thermal degradation in controlled atmospheres,” Journal of Polymer Science: Part A-2, 7 pp.537-549.
    [5.27] Leo Reicha, and David W. Levi, 1967, “Dynamic Thermogravimetric Analysis in Polymer Degradation,” Journal of Polymer Science: Macromolecular Reviews, 1, pp.173-275.
    [5.28] Madorsky, S. L., Hart, V. E., Straus, S., Sedlak, V. A, 1953, “Thermal Degradation of Tetrafluoroethylene and Hydrofluoroethylene Polymers,” Journal of Research of the National Bureau of Standards, 51, pp.327-333.
    [5.29] Hochbaum, A. I., Fan, R., He, R., and Yang, P., 2005, “Controlled Growth of Si Nanowire Arrays for Device Integration,” Nano Lett., 5, pp.457-460.
    [5.30] Wang, Y., Schmidt, V., Senz, S., and Gosele, U., 2006, “Epitaxial growth of silicon nanowires using an aluminium catalyst,” Nature Nano., 1, pp.186-189.
    [5.31] Zhang, X. Y., Zhang, L. D., Meng, G. O., Li, G. H., Jin-Phillipp, N. Y., and Phillipp. F., 2001, “Synthesis of ordered single silicon nanowire arrays,” Adv. Mater., 13, pp.1238-1241.
    [5.32] Peng, K, Wang, X., and Lee, S. T., 2008, ”Silicon nanowire array photoelectrochemical solar cells,” App. Phys. Lett., 92, 163103.
    [5.33] Cao Guozhong, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, 2003.
    [6.1] Padinger, F., Rittberger, R. S., and Sariciftci, N. S., 2003, “Effects of Postproduction Treatment on Plastic Solar Cells,” Adv. Funct. Mater., 13, pp.85-88.
    [6.2] Li, G., Shrotriya,V., Huang, J., Yao, Y., Moriarty, T., Emery, K., and Yang, Y., 2005, “High-efficiency solution processable polymer photovoltaic cell by self-organization of polymer blends,” Nat. Mater., 4, pp.864-868.
    [6.3] Ma, W., Yang, C., Gong, X., Lee, K., and Hegger, A. J., 2005, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology,” Adv. Funct. Mater., 15, pp.1617-1622.
    [6.4] Kim, K., Liu, J., Namboothiry, M. A. G., and Carroll, D., 2007, “Roles of donor and acceptor nanodomains in 6 % efficient thermally annealed polymer photovoltaics,” App. Phys. Lett., 90, pp.163511.
    [6.5] Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M., and Heeger, A. J., 2007, “Efficient Tandem polymer Solar Cells Fabricated by All-Soltion Processing,” Science, 317, pp.222-225.
    [6.6] Coakley, K. M., and McGehee, M. D., 2003, “Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania,” Appl. Phys. Lett., 83, pp.3380-3382.
    [6.7] Qiao, Q., and McLeskey, J. T., 2005, “Water-soluble polythiophene/nanocrystalline Tio2 solar cells,” Appl. Phys. Lett., 86, pp.153501.
    [6.8] Huynh, W. H., Dittmer, J., and Alivisatos, A. P., 2002, “Hybrid Nanorod-Polymer Solar Cells,” Science, 295, pp.2425-2427.
    [6.9] Kang, Y., Park, N. G., and Kim, D., 2005, “Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer,” Appl. Phys. Lett., 86, pp.113101.
    [6.10] Kymakis, E., and Amaratunga, G. A. J., 2002, “Single-wall carbon nanotube/conjugated polymer photovoltaic devices,” Appl. Phys. Lett., 80, pp.112-114.
    [6.11] Liu, C. Y., Holman, Z. C., and Kortshagten, U. R., 2009, “Hybrid Solar Cells from P3HT and Silicon Nanocrystals,” Nano Lett., 9, pp.449-452.
    [6.12] Yang, F., Shtein, M., and Forrest, S. R., 2005, “Controlled growth of a molecular bulk heterojunction photovoltaic cell,” Nat. Mater., 4, pp.37-41.
    [6.13] Law, M. L., Green, E., Johnson, J. C., SayKally, R., and Yang, P., 2005, “Nanowire dye-sensitized solar cells,” Nat. Mater., 4, pp.455-459.
    [6.14] Lu, G., Li, L., and Yang, X., 2008, “Creating a Uniform Distribution of Fullerene C60 Nanorods in a Polymer Matrix and its Photovoltaic Applications**,” Small, 4, pp.601-606.
    [6.15] Kuo, C. Y., Tang, W. C., Gau, C., Guo, T. F., and Jeng, D. Z., 2008, “Ordered bulk heterojunction solar cells with vertically aligned Tio2 nanorods embedded in a conjugated in a conjugated polymer,” Appl. Phys. Lett., 93, pp.033307.
    [6.16] Chen, H. Y., Lo, M. K. F., Yang, G., Monbouquette, H. G., and Yang Y., 2008, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene,” Nature Nano., 3, pp.543-547.
    [6.17] Huang, C. H., Huang, C. H. Nguyen, T. P. and Hsu, C. S., 2007, “Self-assembly monolayer of anatase titanium oxide from solution process on indium tin oxide glass substrate for polymer photovoltaic cells,” Thin Solid Film, 515, pp.6493-6496.
    [6.18] Kalita, G., Adhikari, S., Aryal, H. R., Umeno, M., Afre, R., Soga, T., and Sharon, M., 2008, “Cutting carbon nanotubes for solar cell application,” Appl. Phys. Lett., 92, pp.123508.
    [6.19] Kalita,G., Adhikari, S., Aryal, H. R., Umeno, M., Afre, R., Soga, T., and Sharon, M., 2008, “Fullerene(C60)decoration in oxygen plasma treated multiwalled carbon nanotubes for photovoltaic application,” Appl. Phys. Lett., 92, pp.063508.
    [6.20] Miller, A. J., Hatton, R. A., Chen, G. Y., and Silva, S. R. P., 2007, “Carbon nanotubes grown on in2O3 : Sn glass as large area electrodes for organic photovoltaics,” Appl. Phys. Lett., 90, pp.023105.
    [6.21] Yu, B. Y., Tsai, A. Tsai, S. P., Wong, K. T., Yang, Y., Chu, C. W., and Shyue, J. J., 2008, “Efficient inverted solar cells using TiO2 nanotube arrays,” Nanotechnology, 19, pp.255202.
    [6.22] Kempa, T. J., Tian, B., Kim, D. R., Hu, J., Zheng, X., and Lieber, C. M., 2008, “Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices,” Nano Lett., 8, pp.3456-3460.
    [6.23] Peng, K., Xu, Y., Wu, Y., Yan, Y., Lee, S. T., and Zhu, J., 2005, “Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications,” Small, 1, pp.1062-1067.
    [6.24] Peng, K., Wang, X., and Lee, S. T., 2008, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett., 92, pp.163103.
    [6.25] Huang, J. S., Hsiao, C.Y., Syu, S. J., Chao, J. J., and Lin, C. F., 2009, “Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass,” Solar Energy Materials & Solar Cells, 93, pp.621-624.
    [6.26] Su, Z. X., Sha, J., Niu, J. J., Liu, J. X., and Yang, D. R., 2006, “Synthesis and Raman spectra of Si-nanowires,” Phys. Stat. Sol., 203, pp.792-801.
    [7.1] Hu, L., and Chen, G., 2007, “Analysis fo Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett., 7, pp.3249-3252.
    [7.2] Kayes, B. M., and Atwater, H. A., 2005, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys., 97, pp.114302.
    [7.3] Kelzenberg, M. D., Turner-Evans, D. B., Kayes, B. M., Filler, M. A., Putnam, M. C., Lewis, N. S., and Atwater, H. A., 2008, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett., 8, pp.710-714.
    [7.4] Kempa, T. J., Tian, B., Kim, D. R., Hu, J., Zheng, X., and Lieber, C. M., 2008, “Single and Teandem Axial p-i-n Nanowire Photovoltaic Devces,” Nano Letters, 8, pp.3456-3460.
    [7.5] Tian, B., Zheng, X., Kempa, T. J., Fang, Y., Yu, N., Yu, G., Huang, J., and Lieber, C. M., 2007, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature, 449, pp.855-890.
    [7.6] Fang, H., Li, X., Song, S., Xu, Y., and Zhu, J., 2008, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications,” Nanotechnology, 19, pp.255703.
    [7.7] Peng, K., Xu, Y., Wu, Y., Yan, Y., Lee, S. T., and Zhu, J., 2005, “Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications,” Small, 1, pp.1062-1067.
    [7.8] Stelzner, T., Pietsch, M., Andra, G., Falk, F., Ose, E., and Christiansen, S., 2008, “Silicon nanowire-based solar cells,” Nanotechnology, 19, pp.295203.
    [7.9] Tsakalakos, L., Balch, J., Fronheiser, J., Korevaar, B. A., Sulima, O., and Rand, J., 2007, “Silicon nanowires solar cells,” Appl. Phys. Lett., 91, pp.233117.
    [7.10] J. B. Hannon, S. Kodambaka, F. M. Ross, and R. M. Tromp, Nature 440 69 (2006)
    [7.11]Jenny Nelson, The Physics of Solar Cells, Imperial College Press, 2003, Chap 6.

    [7.12] Shiau, S. H., Liu, C. W., Gau, C., Dai, B. T., 2009, “Growth of Single-Walled Carbon Nanotubes Thin Film and Its Patterning As N-Type Field-Effect Transistor Device Using Integrated Circuit Compatible Process,” Nanotechnology, 19, pp.105303.
    [7.13] Rowell, .M. W., Topinka, M. A., McGehee, M. D., Prall, H. J., Dennler, G., Sariciftci, N. S., Hu, L., and Gruner, G., 2006, “Organic solar cells with carbon nonotube network electrodes,” Appl. Phys. Lett., 88, pp.233506.
    [7.14] Wei, J., Jia, Y., Shu, Q., Gu, Z., Wang, K., Zhuang, D., Zhang, G., Wang, Z., Luo, J., Cao, A., and Wu, D., 2007, “Double-Walled Carbon Nanoture Solar Cells,” Nano Lett., 7, pp.2317-2321.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE