簡易檢索 / 詳目顯示

研究生: 周琮洺
Chou, Tsung-Ming
論文名稱: 金屬接觸轉印微影製程應用於高頻表面聲波元件之製作與實驗量測
Metal Contact Print Photolithography for Fabrication of High Frequency Surface Acoustic Wave Device and Experimental Measurement
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 67
中文關鍵詞: 金屬接觸轉印微影高頻表面聲波元件金屬電極厚度
外文關鍵詞: metal contact print photolithography, high frequency SAW device, electrode thickness
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文成功地使用改良式的金屬接觸轉印微影製程,製作最小線寬500 nm 的高頻表面聲波元件,並量測元件的頻率響應,量測到的最高工作頻率約為1.91 GHz。
    本文使用的接觸式金屬轉印,首先利用h-PDMS軟性模仁的材料特性,完整地將金屬圖案轉印至壓電基板上的光阻層;之後再將轉印到壓電基板的金屬圖案作為一金屬光罩,以黃光微影的標準製程技術定義具次微米等級特徵的表面聲波元件,金屬轉印技術可輕易達到次微米甚至奈米等級的特徵尺寸。以轉印之金屬層作為光罩使用,由於金屬是直接貼附於光阻層之上,可減少光學繞射現象,因此可以精準定義次微米與奈米等級的圖形。
    另一方面,本文量測高頻表面聲波的頻率響應,得到中心頻率最高1.91 GHz的單埠表面聲波諧振器,並嘗試增加元件金屬電極厚度,以觀察在2 GHz的高頻下,金屬電極厚度與波長比值對元件頻率響應的影響,最後再使用模態耦合(Coupling of Mode,COM)理論進行理論分析與實驗驗證。

    This thesis describes a new method to fabricate high frequency surface acoustic wave (SAW) devices. With the new method known as metal contact printing photolithography (MCPP), we can fabricate SAW devices with a 500 nm line-width, and the central frequency of the fabricated SAW devices can reach 1.91 GHz.
    The MCPP method first transfers a patterned metal film from a h-PDMS soft mold to the surface of photo-resist (PR) layer deposited on a piezoelectric substrate. The transferred metal pattern is subsequently used as a photo-mask for UV exposure. Therefore, SAW devices with a metal pattern on a piezoelectric substrate can be fabricated following standard photolithography approaches.
    In the mean time, a number of SAW devices with different metal film thicknesses have been prepared and their characteristics and performance have been experimentally measured. The influence of film-thickness to wavelength ratio on the electrical behaviors of the SAW devices operated around 2 GHz are then experimentally determined. Finally, theoretical analysis based on coupling of mold (COM) method is carried out and compared with experimental results.

    摘要.......................................................I Abstract.................................................II 致謝.....................................................III 目錄......................................................IV 圖目錄....................................................VII 表目錄.....................................................XI 第一章 導論.................................................1 1-1 研究目的與背景...........................................1 1-2 文獻回顧................................................2 1-2.1 表面聲波元件文獻回顧....................................2 1-2.2 奈米壓印技術介紹.......................................4 1-3 本文架構...............................................10 第二章 表面聲波元件設計......................................11 2-1 表面聲波元件工作原理.....................................11 2-1.1 壓電效應.............................................11 2-1.2工作原理..............................................12 2-2元件設計................................................13 2-2.1 壓電基板.............................................13 2-2.2 反射柵...............................................14 2-2.3 交指叉狀換能器........................................17 2-2.4 延遲距離.............................................19 2-2.5 金屬比與金屬電極厚度...................................20 2-3 模態耦合理論............................................22 2-3.1 模態耦合方程式........................................22 2-3.2 P矩陣參數............................................25 2-3.3反射係數與實際波速......................................27 2-4 阻帶邊緣頻率與模態耦合理論參數計算.........................29 第三章 實驗流程.............................................32 3-1 模仁製備...............................................32 3-1.1 矽模仁製備...........................................34 3-1.2 軟性模仁翻製 ..........................................36 3-2 金屬接觸轉印微影製程.....................................41 3-2.1 金屬接觸轉印 ..........................................42 3-2.2 微影製程.............................................44 3-2.3 金屬電極成長..........................................46 3-3 實驗結果與討論 ..........................................48 3-3.1 金屬轉印結果........................................ 48 3-3.2 黃光微影結果 ..........................................50 3-3.3 電極舉離結果..........................................50 第四章 實驗量測結果與模擬分析.................................54 4-1 儀器架構與量測方法.......................................54 4-2 量測結果與討論 ..........................................57 第五章 結論與未來展望........................................62 5-1 結論..................................................62 5-2 未來展望...............................................63 參考文獻...................................................65

    [1]L. Rayleigh (1885), “On waves propagating along the plane surface of an elastic solid,” Pro. London Math. Soc., vol. 7, pp. 4-11.
    [2]R. M. White and F. W. Voltmer (1965), “Direct piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett., vol. 17, pp. 314-316.
    [3]W. P. Mason (1948), Electromechanical Transducers and Wave Filters(2nd ed.), N.J.: van Nostrand Company.
    [4]W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Show (1969), “Analysis of interdigital surface wave transducers by use of an
    equivalent circuit model,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-17, pp. 856-864.
    [5]R. H. Tancrell and M. G. Holland (1971), “Acoustic surface wave filters,” Proc. IEEE, vol. 59, pp. 393-409.
    [6]C. S. Hartmann, D. T. Bell, Jr. and R. C. Rosenfeld (1973), “Impulse response model design of acoustic surface-wave filters,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-21, pp. 162-175.
    [7]J. R. Pierce (1954), “Coupling-of-modes of propagation,” J. Appl. Phys., vol. 25, pp. 179-183.
    [8]P. S. Cross and R. V. Schmidt (1977), “Coupled surface-acoustic-wave resonators,” Bell System Tech. Journal, vol. 56, pp. 1447-1482.
    [9]H. A. Haus (1977), “Modes in SAW grating resonators,” J. Appl. Phys., vol. 48, pp. 4955-4961.
    [10]C. S. Hartmann, P. V. Wright, R. J. Kansy and E. M. Garber (1982), “An analysis of SAW interdigital transducers with internal reflections and the application to the design of single-phase unidirectional transducers,” Proc. IEEE Ultrasonics Symp., pp. 29-34.
    [11]D. P. Chen and H. A. Haus (1985), “Analysis of metal-strip SAW gratings and transducers,” IEEE Trans. on Sonics and Ultrason., vol. SU-26, pp. 395-408.
    [12]S. Y. Chou, P. R. Krauss and P. J. Rmstrom (1995), Appl. Phys. Lett., vol. 67(21), pp. 3114-3116.
    [13]M. Otto, M. Bender, B. Hadam, B. Spangenberg, and H. Kurz (2001), Microelectronic Engineering, vol. 57-58, pp. 361-366.
    [14]Y. Xia and G. M. Whitesides (1998), Angew. Chem. Int., vol. 37, pp. 550-575.
    [15]Y. C. Lee and C. Y. Chiu (2008), “New micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng., vol. 18(7), 075013.
    [16]C. K. Campbell (1998), Surface Acoustic Wave Devices for Mobile and Wireless Communications, New York: Academic Press.
    [17]林俊甫 (2003), 「雙埠表面聲波濾波器的模擬與量測」, 國立成功大學機械工程研究所碩士論文。
    [18]D. P. Morgan (2007), Surface Acoustic Wave Filters(2nd ed.), U. K.: Elsevier.
    [19]蘇冠豪 (2011), 「高頻表面聲波元件的模態耦合理論分析與實驗量測」, 國立成功大學機械工程研究所碩士論文。
    [20]H. Engan (1975), “Surface acoustic wave multi-electrode transducers,” IEEE Trans., SU-22, pp. 395-401.
    [21]S. Datta and B. J. Hunsinger (1980), “An analytical theory for the scattering of SAW by a single electrode in a periodic array on a piezoelectric substrate,” J. Appl. Phys., vol. 51, pp. 4817-4823.
    [22]S. Datta and B. J. Hunsinger (1979), “First-order reflection coefficient of SAW from thin-strip overlays,” J. Appl. Phys., vol. 50, 5661–5665.
    [23]S. Datta (1986), Surface Acoustic Wave Devices, N.J.: Prentice-Hall.
    [24]B. A. Auld (1990), Acoustic Fields and Waves in Solids, vol. I & II, Malabar: R.E. Krieger.
    [25]K. Han, K. S. Kang and J. Kim (2009), “Au-pattern fabrication on a cellulose film using a polyurethane acrylate mold,” J. Micromech. Microeng., vol. 19, 035010.

    下載圖示 校內:2014-08-30公開
    校外:2014-08-30公開
    QR CODE