| 研究生: |
周琮洺 Chou, Tsung-Ming |
|---|---|
| 論文名稱: |
金屬接觸轉印微影製程應用於高頻表面聲波元件之製作與實驗量測 Metal Contact Print Photolithography for Fabrication of High Frequency Surface Acoustic Wave Device and Experimental Measurement |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 金屬接觸轉印微影 、高頻表面聲波元件 、金屬電極厚度 |
| 外文關鍵詞: | metal contact print photolithography, high frequency SAW device, electrode thickness |
| 相關次數: | 點閱:70 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文成功地使用改良式的金屬接觸轉印微影製程,製作最小線寬500 nm 的高頻表面聲波元件,並量測元件的頻率響應,量測到的最高工作頻率約為1.91 GHz。
本文使用的接觸式金屬轉印,首先利用h-PDMS軟性模仁的材料特性,完整地將金屬圖案轉印至壓電基板上的光阻層;之後再將轉印到壓電基板的金屬圖案作為一金屬光罩,以黃光微影的標準製程技術定義具次微米等級特徵的表面聲波元件,金屬轉印技術可輕易達到次微米甚至奈米等級的特徵尺寸。以轉印之金屬層作為光罩使用,由於金屬是直接貼附於光阻層之上,可減少光學繞射現象,因此可以精準定義次微米與奈米等級的圖形。
另一方面,本文量測高頻表面聲波的頻率響應,得到中心頻率最高1.91 GHz的單埠表面聲波諧振器,並嘗試增加元件金屬電極厚度,以觀察在2 GHz的高頻下,金屬電極厚度與波長比值對元件頻率響應的影響,最後再使用模態耦合(Coupling of Mode,COM)理論進行理論分析與實驗驗證。
This thesis describes a new method to fabricate high frequency surface acoustic wave (SAW) devices. With the new method known as metal contact printing photolithography (MCPP), we can fabricate SAW devices with a 500 nm line-width, and the central frequency of the fabricated SAW devices can reach 1.91 GHz.
The MCPP method first transfers a patterned metal film from a h-PDMS soft mold to the surface of photo-resist (PR) layer deposited on a piezoelectric substrate. The transferred metal pattern is subsequently used as a photo-mask for UV exposure. Therefore, SAW devices with a metal pattern on a piezoelectric substrate can be fabricated following standard photolithography approaches.
In the mean time, a number of SAW devices with different metal film thicknesses have been prepared and their characteristics and performance have been experimentally measured. The influence of film-thickness to wavelength ratio on the electrical behaviors of the SAW devices operated around 2 GHz are then experimentally determined. Finally, theoretical analysis based on coupling of mold (COM) method is carried out and compared with experimental results.
[1]L. Rayleigh (1885), “On waves propagating along the plane surface of an elastic solid,” Pro. London Math. Soc., vol. 7, pp. 4-11.
[2]R. M. White and F. W. Voltmer (1965), “Direct piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett., vol. 17, pp. 314-316.
[3]W. P. Mason (1948), Electromechanical Transducers and Wave Filters(2nd ed.), N.J.: van Nostrand Company.
[4]W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Show (1969), “Analysis of interdigital surface wave transducers by use of an
equivalent circuit model,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-17, pp. 856-864.
[5]R. H. Tancrell and M. G. Holland (1971), “Acoustic surface wave filters,” Proc. IEEE, vol. 59, pp. 393-409.
[6]C. S. Hartmann, D. T. Bell, Jr. and R. C. Rosenfeld (1973), “Impulse response model design of acoustic surface-wave filters,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-21, pp. 162-175.
[7]J. R. Pierce (1954), “Coupling-of-modes of propagation,” J. Appl. Phys., vol. 25, pp. 179-183.
[8]P. S. Cross and R. V. Schmidt (1977), “Coupled surface-acoustic-wave resonators,” Bell System Tech. Journal, vol. 56, pp. 1447-1482.
[9]H. A. Haus (1977), “Modes in SAW grating resonators,” J. Appl. Phys., vol. 48, pp. 4955-4961.
[10]C. S. Hartmann, P. V. Wright, R. J. Kansy and E. M. Garber (1982), “An analysis of SAW interdigital transducers with internal reflections and the application to the design of single-phase unidirectional transducers,” Proc. IEEE Ultrasonics Symp., pp. 29-34.
[11]D. P. Chen and H. A. Haus (1985), “Analysis of metal-strip SAW gratings and transducers,” IEEE Trans. on Sonics and Ultrason., vol. SU-26, pp. 395-408.
[12]S. Y. Chou, P. R. Krauss and P. J. Rmstrom (1995), Appl. Phys. Lett., vol. 67(21), pp. 3114-3116.
[13]M. Otto, M. Bender, B. Hadam, B. Spangenberg, and H. Kurz (2001), Microelectronic Engineering, vol. 57-58, pp. 361-366.
[14]Y. Xia and G. M. Whitesides (1998), Angew. Chem. Int., vol. 37, pp. 550-575.
[15]Y. C. Lee and C. Y. Chiu (2008), “New micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng., vol. 18(7), 075013.
[16]C. K. Campbell (1998), Surface Acoustic Wave Devices for Mobile and Wireless Communications, New York: Academic Press.
[17]林俊甫 (2003), 「雙埠表面聲波濾波器的模擬與量測」, 國立成功大學機械工程研究所碩士論文。
[18]D. P. Morgan (2007), Surface Acoustic Wave Filters(2nd ed.), U. K.: Elsevier.
[19]蘇冠豪 (2011), 「高頻表面聲波元件的模態耦合理論分析與實驗量測」, 國立成功大學機械工程研究所碩士論文。
[20]H. Engan (1975), “Surface acoustic wave multi-electrode transducers,” IEEE Trans., SU-22, pp. 395-401.
[21]S. Datta and B. J. Hunsinger (1980), “An analytical theory for the scattering of SAW by a single electrode in a periodic array on a piezoelectric substrate,” J. Appl. Phys., vol. 51, pp. 4817-4823.
[22]S. Datta and B. J. Hunsinger (1979), “First-order reflection coefficient of SAW from thin-strip overlays,” J. Appl. Phys., vol. 50, 5661–5665.
[23]S. Datta (1986), Surface Acoustic Wave Devices, N.J.: Prentice-Hall.
[24]B. A. Auld (1990), Acoustic Fields and Waves in Solids, vol. I & II, Malabar: R.E. Krieger.
[25]K. Han, K. S. Kang and J. Kim (2009), “Au-pattern fabrication on a cellulose film using a polyurethane acrylate mold,” J. Micromech. Microeng., vol. 19, 035010.