| 研究生: |
黃致凱 Huang, Zhi-Kai |
|---|---|
| 論文名稱: |
磷化銦鎵/砷化鎵異質接面雙載子電晶體之參數粹取及參數與元件幾何關係的探討 Parameter Extraction and Discussion About The Device Geometry of InGaP/GaAs HBTs |
| 指導教授: |
蘇炎坤
Su, Yan-K |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 參數粹取 、雙載子電晶體 |
| 外文關鍵詞: | InGaP/GaAs HBTs, Parameter Extraction |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主旨在針對磷化銦鎵/砷化鎵異質接面雙載子電晶體之參數粹取及粹取參數與元件幾何關係的討論。除此之外,我們也考慮了元件操作時的熱效應現象和低頻雜訊對電路設計的影響。
本次實驗的模型以Gummel-Poon Model 為主,不過為了更加準確的模擬元件熱效應現象,所以除了原本Gummel-Poon本身的熱參數之外,也參考了VBIC model 裡面部分的熱參數;此外,隨著目前電路設計越來越複雜,低頻雜訊對雜訊類比電路設計而言,顯的非常重要。
為了取的模型中各參數的值,我們藉由IC-CAP中的BJT模型模組,來進行量測和參數粹取的動作,進而得到四個不同射極面積大小的HBT初始參數值。接著外加一個子電路,並且利用IC-CAP所提供的PEL語言,配合熱參數的相關式子,模擬元件的熱效應;最後利用IC-CAP中提供的低頻雜訊模型模組,建立低頻雜訊模型。
最後由實際的量測結果與模擬結果做比較,來印證本論文中所建立的模型於磷化銦鎵/砷化鎵異質接面雙載子電晶體特性的準確性。除了模型之外,本論文也從物理意義層面,來探討參數跟元件的幾何關係,從討論中,除了發現參數的確滿足元件的物理意義,也更加確定了參數的準確性。
綜合上述結果,本論文所建立的模型,確實能正確模擬磷化銦鎵/砷化鎵異質接面雙載子電晶體的特性。
This thesis is to extract the parameters of InGaP/GaAs HBTs and to discuss the relationship between parameters and device geometry. Besides, we also consider the thermal effect when devices are operated and the effect of low frequency noise on circuit design.
We adopt Gummel-Poon model in this thesis. In order to accurately simulate the thermal effect, we not only take thermal parameters in Gummel-Poon model into account but also in VBIC model. As the complexity of circuit, low frequency noise becomes very important for analog circuit design.
To get the value of parameters, we use the BJT model which is afforded by IC-CAP to do the measurement and parameter extraction and then we can get the initial parameters of four HBTs with different emitter area. Following we add an sub-circuit and use the PEL language in IC-CAP in cooperation with thermal equation to simulate the thermal effect. At last we build a 1/f noise model.
Finally, we compare the measurement results with simulations’ to verify the accuracy in simulating the characteristic of the InGaP/GaAs HBTs. Besides simulation, we also discuss some parameters’ relation with emitter area. According to the discussion’s result, we find that these parameters indeed have the right tendency. So we
To sum up these results, we can simulate the characteristic of
InGaP/GaAs HBTs correctly by the model we establish.
[1] Robert Anholt “ Electrical and Thermal Characterization of MESFETs, HEMTs, and HBTs ”
[2] P. Asbeck, M. Chang, J. Corcoran, “ HBT Application Prospects in the US ” IEEE GaAs IC Symp 1991.
[3] B. K. Oyama, and B. P. Wong “ GaAs HBT’s for Analog Circuits ” IEEE, December 1993.
[4] B. Bayraktaroglu “ GaAs HBT’s for Microwave Circuits ” IEEE, December 1993.
[5] J. J. Liou, L. L. Liou, “A Physics-Based, Analytical Heterojunction Bipolar Transistor Model Including Thermal and High-Current Effects ” IEEE, September 1993.
[6] L. L. Liou, C. I. Huang, J. Ebel, “Numerical studies of thermal effects on heterojunction bipolar transistor current-voltage characterisrics using one-dimensional simulation ” Solid-State Electron, 1992
[7] C. F. Machala III, James R. Parker, “ Geometry and Temperature Extensions to the Gummel-Poon Model ” IEEE, 1992.
[8] G.Massobrio and P. Antogentti, “ Semiconductor Device Modeling With SPICE ” McGraw-Hill, Inc. Second Edition.
[9] P. C. Ho, “ Parameter Extraction and model Establishment of AlGaAs/GaAs HBT ” Master’s degree thesis, Department of Electrical Engineering National Cheng Kung University Tainan, Taiwan, R.O.C.
[10] W. Liu, “ Fundmentals of III – V Devices ” John Wiely & Sons Inc. 1999.
[11] J. A. Fellows, V. M. Bright, T. J. Jenlins, “ A Physics-Based Heterojunction bipolar Transistor Model For Integrated Circuit Simulation ” U.S. Government work not protected by U.S. copyright.
[12] Agilent Technologies, “ IC-CAP Characterization & Modeling Handbook ”
[13] G. Massobrio and P. Antogentti, “ Semiconductor Device Modeling With SPICE ” McGraw-Hill, Inc. Second Edition.
[14] F. Sischka, Agilent Technologies GmbH, Munich, “ Gummel-Poon Bipolar Model Description Parameter Extraction ” Gummel-Poon Toolkit B0_Headr.Wps.
[15] A. Garlapati and S. Prasad, “ Large Signal Characterization of Heterojunction Bipolar Transistors ”IEEE, October 1999.
[16] W. Lilensky and H. Beneking, “New Technique for Determination of Static Emitter and Collector Series Resistance of Bipolar Transistors.” Electronic Letters, July 1981.
[17] J. S. T. Huang, “Rapid determination of emitter-and collector-bulk resistances.” IEEE, Apr 1976.
[18] D. MacSweeney, and Kevin McCarthy. “Inclusion of Substrate Effects in the Flyback Method for BJT Resistance Characterization” IEEE, March 1999.
[19] Agilent Technologies, “ High-Frequency Model Tutorial ” vol.1. IC-CAP manual.
[20] JOHN WILEY & SONS, INC “ FUNDAMENTALS OF III-V DEVICES : HBTs, MESFETs, and HFETs/HEMTs ”
[21] G. B. Gao, M. Z. Wang; X. gui, H. Morkoc, “ Thermal design studies of high-power heterojunction bipolar transistors ” IEEE, May 1989.
[22] Steve P. Marsh, “ Direct Extraction Technique to Derive the Junction Temperature of HBT’s Under Self-Heating Bias Conditions ” IEEE, 2000
[23] Robert Anholt, “ Electrical and Thermal Characteriization of MESFETs, HEMTs, and HBTs ”
[24] Agilent Technologies, “ Agilent 89190A IC-CAP 2002 Reference Parameter Extraction Language ”
[25] George D. Vendelin, “ Microwave Circuit Design Using Linear and Nonlinear Techniques”, John Wiley, New York, 1990
[26] Aldert van der Ziel, Xiaonan Zhang, “ Location of 1/f Noise Sources in BJT’s and HBJT’s – I. Theory ”, IEEE Transactions on electron devices, September, 1986
[27] Theo G. M. Kleinpenning, “ Location of Low-Frequency Noise Sources in Submicron Bipolar Transistors ”, IEEE Transactions on Electron Devices, June, 1992
[28] F. X. Sinnesbichler, M. Fisher, G. R. Olbrich, “ Accurate Extraction Junction Transistor Models ”, IEEE, 1998
[29] J.C. Costa, D. Ngo, R. Jackson, “ Extraction of 1/f noise Coefficients for BJT’s ”, IEEE Transactions on Electron Devices, November, 1994
[30] F. Pascal, C. Chay, M.J. Deen, “ Comparison of Low-Frequency noise in III-V and Si/SiGe HBTs ”, IEE, 2004