簡易檢索 / 詳目顯示

研究生: 黃致凱
Huang, Zhi-Kai
論文名稱: 磷化銦鎵/砷化鎵異質接面雙載子電晶體之參數粹取及參數與元件幾何關係的探討
Parameter Extraction and Discussion About The Device Geometry of InGaP/GaAs HBTs
指導教授: 蘇炎坤
Su, Yan-K
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 92
中文關鍵詞: 參數粹取雙載子電晶體
外文關鍵詞: InGaP/GaAs HBTs, Parameter Extraction
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主旨在針對磷化銦鎵/砷化鎵異質接面雙載子電晶體之參數粹取及粹取參數與元件幾何關係的討論。除此之外,我們也考慮了元件操作時的熱效應現象和低頻雜訊對電路設計的影響。

      本次實驗的模型以Gummel-Poon Model 為主,不過為了更加準確的模擬元件熱效應現象,所以除了原本Gummel-Poon本身的熱參數之外,也參考了VBIC model 裡面部分的熱參數;此外,隨著目前電路設計越來越複雜,低頻雜訊對雜訊類比電路設計而言,顯的非常重要。

      為了取的模型中各參數的值,我們藉由IC-CAP中的BJT模型模組,來進行量測和參數粹取的動作,進而得到四個不同射極面積大小的HBT初始參數值。接著外加一個子電路,並且利用IC-CAP所提供的PEL語言,配合熱參數的相關式子,模擬元件的熱效應;最後利用IC-CAP中提供的低頻雜訊模型模組,建立低頻雜訊模型。

      最後由實際的量測結果與模擬結果做比較,來印證本論文中所建立的模型於磷化銦鎵/砷化鎵異質接面雙載子電晶體特性的準確性。除了模型之外,本論文也從物理意義層面,來探討參數跟元件的幾何關係,從討論中,除了發現參數的確滿足元件的物理意義,也更加確定了參數的準確性。

      綜合上述結果,本論文所建立的模型,確實能正確模擬磷化銦鎵/砷化鎵異質接面雙載子電晶體的特性。

     This thesis is to extract the parameters of InGaP/GaAs HBTs and to discuss the relationship between parameters and device geometry. Besides, we also consider the thermal effect when devices are operated and the effect of low frequency noise on circuit design.

     We adopt Gummel-Poon model in this thesis. In order to accurately simulate the thermal effect, we not only take thermal parameters in Gummel-Poon model into account but also in VBIC model. As the complexity of circuit, low frequency noise becomes very important for analog circuit design.

     To get the value of parameters, we use the BJT model which is afforded by IC-CAP to do the measurement and parameter extraction and then we can get the initial parameters of four HBTs with different emitter area. Following we add an sub-circuit and use the PEL language in IC-CAP in cooperation with thermal equation to simulate the thermal effect. At last we build a 1/f noise model.

     Finally, we compare the measurement results with simulations’ to verify the accuracy in simulating the characteristic of the InGaP/GaAs HBTs. Besides simulation, we also discuss some parameters’ relation with emitter area. According to the discussion’s result, we find that these parameters indeed have the right tendency. So we

     To sum up these results, we can simulate the characteristic of
    InGaP/GaAs HBTs correctly by the model we establish.

    Contents Abstract ( in Chinese) ……………………………………………… I Abstract (in English) ……………………………………………… III Acknowledgement ……………………………………………… V Contents ……………………………………………………………… VI TableCaptions ……………………………………………………… VIII Figure Captions ……………………………………………………… IX CHAPTER 1 ReIntroduction 1.1 An Introduction to Heterojunction Bipolar Transistors 1 CHAPTER 2 Re Gummel Poon Model 2.1 Why Gummel Poon Model 3 2.2 Gummel Poon Static model 3 2.3 Gummel Poon Large Signal Model 6 2.4 Gummel-Poon Small Signal Model 8 CHAPTER 3 Re Parameter Extraction 3.1 A Brief Introduction 13 3.2 Extraction of Capacitance Parameters 13 3.3 Extract the Emitter and Collector Contact Resistors 15 3.4 Extract The Forward Gummel Poon Parameters 16 3.5 Extraction of base resistance 18 3.6 Extraction of AC Parameters 19 3.7 De-embedding Technique 19 3.8 Discussion of Scalable Parameters 22 3.8.1 NF & IS 22 3.8.2 NE & ISE 23 3.8.3 RE , RC , RB 24 3.8.4 CJE , CJC 26 3.8.5 LE & LB 27 CHAPTER 4 Re Thermal Parameter Extraction and Simulation 4.1 Thermal Effect In InGaP/GaAs HBTs 64 4.2 Thermal Effect Simulation With PEL Prpgram 64 4.3 Simulation of Different Ambient Temperature 66 CHAPTER 5 Re Flicker noise Model 5.1 Introduction 76 5.2 Types of Noise in Semiconductors 76 5.2.1 Thermal Noise 76 5.2.2 Shot Noise 77 5.2.3 Generation - Recombination Noise 78 5.2.4 1/f Noise 78 5.3 1/f Noise Parameter Extraction 79 5.4 Results and Discussion 81 CHAPTER 6 Re Conclusion and Future Work 6.1 Conclusion 89 6.2 Future Work 90 Table Captions Table 2-1 Capacitance equations 12 Table 3-1 The measured conditions for every DC and RF measurements 59 Table 3-2 Parameters for various different emitter devices 62 Table 3-3 Comparison of measured and simulated results for CJE, CJC 63 Table 4-1 Thermal parameters for various different emitter devices 75 Table 5-1 1/f noise model parameters comparison 88 Figure Captions Fig 2-1 Graph of ln (IC) and ln (IB) vs. VBE with VBC =0 9 Fig 2-2 Graph of βF vs. IC 9 Fig 2-3 Four recombination base current component in base region 10 Fig 2-4 Gummel-Poon static model 10 Fig 2-5 Gummel-Poon large signal model 11 Fig 2-6 Gummel-Poon small signal model 11 Fig 3-1 CBE vs. VBE measurement 28 Fig 3-2 Schematic of extracting RE with flyback method 28 Fig 3-3 The plot of VC vs. IB for extraction of RE 29 Fig 3-4 Schematic of extracting RC with flyback method 29 Fig 3-5 The plot of VC vs. IC for extraction of RC 30 Fig 3-6 The plot of IC & IB vs. VBE in the forward active region 30 Fig 3-7 The plot of βF vs. VBE in forward active region 31 Fig 3-8 The schematic of equivalent base-emitter input impedance at zero bias 31 Fig 3-9 S11 plot for extracting RB by input impedance circle method at zero bias 32 Fig 3-10 Parasitic components of test pad 32 Fig 3-11 HBT large signal equivalent circuit 33 Fig 3-12 HBT OPEN dummy test pad 33 Fig 3-13 The equivalent circuit of HBT OPEN dummy test pad 34 Fig 3-14 The equivalent circuit of large signal equivalent circuit deducted parasitic capacitors 34 Fig 3-15 HBT short dummy test pad 35 Fig 3-16 The equivalent circuit of HBT SHORT dummy test pad 35 Fig 3-17 The equivalent circuit of HBT parasitic inductors and resistors 36 Fig 3-18 The equivalent circuit of HBT intrinsic device 36 Fig 3-19 The plot of collector current density vs. VB 37 Fig 3-20 The plot of IS for four different emitter size vs. emitter area 37 Fig 3-21 Four extra base components and its properities 38 Fig 3-22 The plot of base current density vs. VB 38 Fig 3-23 The plot of ISE for four different emitter size vs. emitterarea 39 Fig 3-24 The schematic of InGaP/GaAs HBT 39 Fig 3-25 The plot of RE for various different emitter size vs. emitter area 40 Fig 3-26 The plot of RC for various different emitter size vs. emitter area 40 Fig 3-27 The plot of RB for various different emitter size vs. emitter area 41 Fig 3-28 The plot of CJE for various different emitter size vs. emitter area 41 Fig 3-29 The plot of CJC for various different emitter size vs. emitter area 42 Fig 3-30 The change of metal line’s length between Emitter-Pad and Base-Pad 42 Fig Q10_1 The forward Gummel plot 43 Fig Q10_2 The reverse Gummel plot 43 Fig Q10_3 Extraction of collector contact resistance 44 Fig Q10_4 Extraction of emitter contact resistance 44 Fig Q10_5 Extraction of B-E and B-C junction capacitance 45 Fig Q10_6 The plot of Ft vs. Ic 45 Fig Q10_7 The Smith chart of S.11 46 Fig Q10_8 The polar chart of S.21 46 Fig Q20_1 The forward Gummel plot 47 Fig Q20_2 The reverse Gummel plot 47 Fig Q20_3 Extraction of collector contact resistance 48 Fig Q20_4 Extraction of emitter contact resistance 48 Fig Q20_5 Extraction of B-E and B-C junction capacitance 49 Fig Q20_6 The plot of Ft vs. Ic 49 Fig Q20_7 The Smith chart of S.11 50 Fig Q20_8 The polar chart of S.21 50 Fig Q28_1 The forward Gummel plot 51 Fig Q28_2 The reverse Gummel plot 51 Fig Q28_3 Extraction of collector contact resistance 52 Fig Q28_4 Extraction of emitter contact resistance 52 Fig Q28_5 Extraction of B-E and B-C junction capacitance 53 Fig Q28_6 The plot of Ft vs. Ic 53 Fig Q28_7 The Smith chart of S.11 54 Fig Q28_8 The polar chart of S.21 54 Fig Q56_1 The forward Gummel plot 55 Fig Q56_2 The reverse Gummel plot 55 Fig Q56_3 Extraction of collector contact resistance 56 Fig Q56_4 Extraction of emitter contact resistance 56 Fig Q56_5 Extraction of B-E and B-C junction capacitance 57 Fig Q56_6 The plot of Ft vs. Ic 57 Fig Q56_7 The Smith chart of S.11 58 Fig Q56_8 The polar chart of S.21 58 Fig 4-1 Simulation of forward Gummel plot without thermal effect 67 Fig 4-2 Equivalent circuits coupled electrical and thermal model of a device 67 Fig 4-3 IC vs. VCE for three ambient temperatures and constant IB 68 Fig 4-4 The forward gummel plot of IC which is simulated at 25oC and measured at 25oC, 55oC, 85oC. 68 Fig 4-5 The forward gummel plot of IB which is simulated at 25oC and measured at 25oC, 55oC, 85oC. 69 Fig Q10_1 The thermal effect simulation plot 69 Fig Q10_2 The forward gummel plot of IC which is simulated at various ambient temperature 70 Fig Q10_3 The forward gummel plot of IB which is simulated at various ambient temperature 70 Fig Q20_1 The thermal effect simulation plot 71 Fig Q20_2 The forward gummel plot of IC which is simulated at various ambient temperature 71 Fig Q20_3 The forward gummel plot of IB which is simulated at various ambient temperature 72 Fig Q28_1 The thermal effect simulation plot 72 Fig Q28_2 The forward gummel plot of IC which is simulated at various ambient temperature 73 Fig Q28_3 The forward gummel plot of IB which is simulated at various ambient temperature 73 Fig Q56_1 The forward gummel plot of IC which is simulated at various ambient temperature 74 Fig Q56_2 The forward gummel plot of IB which is simulated at various ambient temperature 74 Fig 5-1 The plot of 1/f noise vs. frequency 82 Fig 5-2 The plot of 1/f noise*frequency vs. frequency 82 Fig 5-3 The plot of fitted curve for calculating AF & KF 83 Fig 5-4 The plot of KF against emitter area 83 Fig Q10_1 The plot of SiB@1Hz vs. frequency 84 Fig Q10_2 The plot of measured and simulated noise spectral density[A2/Hz] vs. frequency 84 Fig Q20_1 The plot of SiB@1Hz vs. frequency 85 Fig Q20_2 The plot of measured and simulated noise spectral density[A2/Hz] vs. frequency 85 Fig Q28_1 The plot of SiB@1Hz vs. frequency 86 Fig Q28_2 The plot of measured and simulated noise spectral density[A2/Hz] vs. frequency 86 Fig Q56_1 The plot of SiB@1Hz vs. frequency 87 Fig Q56_2 The plot of measured and simulated noise spectral density[A2/Hz] vs. frequency 87

    [1] Robert Anholt “ Electrical and Thermal Characterization of MESFETs, HEMTs, and HBTs ”
    [2] P. Asbeck, M. Chang, J. Corcoran, “ HBT Application Prospects in the US ” IEEE GaAs IC Symp 1991.
    [3] B. K. Oyama, and B. P. Wong “ GaAs HBT’s for Analog Circuits ” IEEE, December 1993.
    [4] B. Bayraktaroglu “ GaAs HBT’s for Microwave Circuits ” IEEE, December 1993.
    [5] J. J. Liou, L. L. Liou, “A Physics-Based, Analytical Heterojunction Bipolar Transistor Model Including Thermal and High-Current Effects ” IEEE, September 1993.
    [6] L. L. Liou, C. I. Huang, J. Ebel, “Numerical studies of thermal effects on heterojunction bipolar transistor current-voltage characterisrics using one-dimensional simulation ” Solid-State Electron, 1992
    [7] C. F. Machala III, James R. Parker, “ Geometry and Temperature Extensions to the Gummel-Poon Model ” IEEE, 1992.
    [8] G.Massobrio and P. Antogentti, “ Semiconductor Device Modeling With SPICE ” McGraw-Hill, Inc. Second Edition.
    [9] P. C. Ho, “ Parameter Extraction and model Establishment of AlGaAs/GaAs HBT ” Master’s degree thesis, Department of Electrical Engineering National Cheng Kung University Tainan, Taiwan, R.O.C.
    [10] W. Liu, “ Fundmentals of III – V Devices ” John Wiely & Sons Inc. 1999.
    [11] J. A. Fellows, V. M. Bright, T. J. Jenlins, “ A Physics-Based Heterojunction bipolar Transistor Model For Integrated Circuit Simulation ” U.S. Government work not protected by U.S. copyright.
    [12] Agilent Technologies, “ IC-CAP Characterization & Modeling Handbook ”
    [13] G. Massobrio and P. Antogentti, “ Semiconductor Device Modeling With SPICE ” McGraw-Hill, Inc. Second Edition.
    [14] F. Sischka, Agilent Technologies GmbH, Munich, “ Gummel-Poon Bipolar Model Description Parameter Extraction ” Gummel-Poon Toolkit B0_Headr.Wps.
    [15] A. Garlapati and S. Prasad, “ Large Signal Characterization of Heterojunction Bipolar Transistors ”IEEE, October 1999.
    [16] W. Lilensky and H. Beneking, “New Technique for Determination of Static Emitter and Collector Series Resistance of Bipolar Transistors.” Electronic Letters, July 1981.
    [17] J. S. T. Huang, “Rapid determination of emitter-and collector-bulk resistances.” IEEE, Apr 1976.
    [18] D. MacSweeney, and Kevin McCarthy. “Inclusion of Substrate Effects in the Flyback Method for BJT Resistance Characterization” IEEE, March 1999.
    [19] Agilent Technologies, “ High-Frequency Model Tutorial ” vol.1. IC-CAP manual.
    [20] JOHN WILEY & SONS, INC “ FUNDAMENTALS OF III-V DEVICES : HBTs, MESFETs, and HFETs/HEMTs ”
    [21] G. B. Gao, M. Z. Wang; X. gui, H. Morkoc, “ Thermal design studies of high-power heterojunction bipolar transistors ” IEEE, May 1989.
    [22] Steve P. Marsh, “ Direct Extraction Technique to Derive the Junction Temperature of HBT’s Under Self-Heating Bias Conditions ” IEEE, 2000
    [23] Robert Anholt, “ Electrical and Thermal Characteriization of MESFETs, HEMTs, and HBTs ”
    [24] Agilent Technologies, “ Agilent 89190A IC-CAP 2002 Reference Parameter Extraction Language ”
    [25] George D. Vendelin, “ Microwave Circuit Design Using Linear and Nonlinear Techniques”, John Wiley, New York, 1990
    [26] Aldert van der Ziel, Xiaonan Zhang, “ Location of 1/f Noise Sources in BJT’s and HBJT’s – I. Theory ”, IEEE Transactions on electron devices, September, 1986
    [27] Theo G. M. Kleinpenning, “ Location of Low-Frequency Noise Sources in Submicron Bipolar Transistors ”, IEEE Transactions on Electron Devices, June, 1992
    [28] F. X. Sinnesbichler, M. Fisher, G. R. Olbrich, “ Accurate Extraction Junction Transistor Models ”, IEEE, 1998
    [29] J.C. Costa, D. Ngo, R. Jackson, “ Extraction of 1/f noise Coefficients for BJT’s ”, IEEE Transactions on Electron Devices, November, 1994
    [30] F. Pascal, C. Chay, M.J. Deen, “ Comparison of Low-Frequency noise in III-V and Si/SiGe HBTs ”, IEE, 2004

    下載圖示 校內:2006-07-13公開
    校外:2006-07-13公開
    QR CODE