| 研究生: |
雷濱陽 Lai, Dennis |
|---|---|
| 論文名稱: |
台灣發震深度之研究 Seismogenic Thickness of Taiwan |
| 指導教授: |
饒瑞鈞
Rau, Ruey-Juin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系碩士在職專班 Department of Earth Sciences (on the job class) |
| 論文出版年: | 2009 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 發震深度 、D95 、脆塑性轉換 |
| 外文關鍵詞: | Seismogenic Thickness, D95, Brittle-ductile transition |
| 相關次數: | 點閱:119 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
強烈的地震對於人類生命財產安全均有很大的危害,而台灣地區因位處板塊邊界,板塊運動導致地震活動相當頻繁,所以研究其發震的構造便顯得重要。探就地震的發生因為地下岩層中累積的應力能量釋放,某個區域能夠容納應力能量的多寡取決於岩層本身的性質、所處溫度及壓力。由於岩石越接近熔點越具有可塑性而可累積來釋放之應力能量會變小許多,進而讓地震次數與釋放能量也減少。故到了某一深度後,岩石會產生脆-塑性轉變(Brittle-ductile transition),同時地震也減少,所以這個轉變帶也決定是否有地震的轉變帶(Seismic-aseismic transition)。本研究利用台灣地區1991年1月至2008年10月的地震資料,希望勾勒出台灣地區的發震深度,來預測台灣各斷層區域所能夠產生的最大地震規模。本研究計算D95作為各區域的發震深度值,D95為該區域所有地震資料依照發震深度大小排列後,其上方95%地震資料和下方5%地震資料的分隔深度。我們發現在台灣各地震分區中所能發生最大地震規模之值最大的在外海之琉球海溝系統,最大可能產生地震規模8.0的強震,而最小值則是新竹地區的6.9。其他重要之斷層如車籠埔斷層(Mw7.8)、彰化斷層(Mw7.8)、屯子腳斷層(Mw6.5)、梅山斷層(Mw6.4)、新化斷層(Mw6.2)、潮州斷層(Mw7.3)等。
Strong earthquakes have severe influences on human’s life, property, and safety. Taiwan is located in the plate boundary, the plate movement lead to frequent intense earthquake activities, such that the seismogenic structure of Taiwan becomes important. Where the earthquake occurred is related to the energy release of the underground rocks. The energy for an area can accommodate depends on the rock formation, temperature condition, and pressure. When the temperature of the rock closer to its melting point, it will become more plastic and the ability to accumulate and release the strain energy becomes smaller, which let the earthquake numbers diminish. So after it comes to some depth, the rock will become more ductile, and the earthquake number will also diminish, such a transition is called brittle-ductile transition and the depth is called the seismogenic thickness. So the brittle-ductile transition also called the seismic-aseismic transition. Our research used Taiwan earthquake data from January 1991 to October 2008. We determined the seismogenic thickness of Taiwan area, and to predict the maximum capable earthquake magnitude for each major fault zones of Taiwan. Our research used the so called D95. According to the focal depths of the earthquakes, the separation of the top 95% earthquake data and the 5% bottom earthquake data is defined as the seismogenic thickness. We calculated D95 for different area to estimate the value of seismogenic thickness. We found that the biggest capable earthquake size in the Taiwan area is in offshore eastern Taiwan and the earthquake magnitude is Mw8.0, and the smallest value is the Mw6.9 of Hsin-Chu area. Other important faults such as Chelungpu fault (Mw7.8), Changhua fault (Mw7.8), Tuntzuchiao fault (Mw6.5), Meishan fault (Mw6.4), Hsinhua (Mw6.2), Chaochow fault (Mw7.3) and so on.
參考文獻
陳正宏(1990)。台灣之火成岩。經濟部中央地質調查所編印。
Chai, B. H. T. (1972). Structure and tectonic evolution of Taiwan. American Journal of Science, 272, 389-422.
Chen, W. P. and Molnar, P. (1983). Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. Journal of Geophysical Research, 88, 4183-4214.
Hetland, E. A. and Wu, F. T. (1998). Deformation of the Philippine Sea Plate under the Coastal Range, Taiwan: Results from Offshore-Onshore Seismic Experiment. Terr. Atmos. Oceanic Sci.9, 363-378.
Huang, C. Y., Yuan, P. B., Lin, C. W., Wang, T. K. and Chang, C. P. (2000). Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325, 1-21.
Jackson, J. (2002). Strength of the continental lithosphere: Time to abandon the jelly sandwich? GSA TODAY, 12(9), 1-8.
Kao, H., Huang, G. C. and Liu, C. S. (2000). Transition from oblique subduction to collision in the northern Luzon arc-Taiwan region: Constrains from bathemetry and seismic observations. Journal of Geophysical Research, 105, 3059-3079.
Kao, H., Shen, S. J. and Ma, K. F. (1998). Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region. Journal of Geophysical Research, 103, 7211-7229.
Lee, C. S., Chung, S. L. and SPOT Members. (1998). Southernmost part of the Okinawa Trough (SPOT): An active extension/ collision/ subduction area. EOS, Trans. Am. Geophys. Union, 79, W109.
Lee, C. S., Shor, G. G., Bibee, L. D., Lu, R. S. and Hilde, T. W. C. (1980). Okinawa Trough: Origin of a back-arc basin. Marine Geology, 35, 219-241.
Lee, C. T. and Wang, Y. (1988). Quaternary stress changes in northern Taiwan and their tectonic implication. Proc. Memoir of the Geological Society of China, 31, 154-168.
Maggi, A., Jackson, J. A., Priestley, K., and Baker, C. (2000a). A re-assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: Do earthquakes really occur in the continental mantle? Geophysical Journal International, 143, 629-661.
Maggi, A., Jackson, J. A., McKenzie, D., and Priestley, K. (2000b). Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28, 6, 495-498.
Magistrale, H. (2002). Relative contributions of crustal temperature and Composition to controlling the depth of earthquakes in southern California. Geophysical Research Letters, 29(10), 1447, doi: 10.1029/2001GL014375.
McKenzie, D. and Fairhead, D. (1997). Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies. Journal of Geophysical Research, 102, 27523-27552.
Nazareth, J. J. and Hauksson, E. (2004). The seismogenic thickness of the southern California crust. Bulletin of the Seismological Society of America, 94(3), 940-960.
Shyu, J. B. H., Sieh, K., Chen, Y. G. and Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research, 110, 1-33.
Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China, 4(4), 67-89.
Suppe, J. (1984). Kinematic of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Memoir of the Geological Society of China, 6, 21-34.
Suppe, J. (1987). The active Taiwan mountain belt. In Schaer, J.P. and Rodgers, J.(editors), The Anatomy of Mountain Ranges, Princeton Univ. Press, Princeton, N. J., 277-293.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continental collision in Taiwan. Tectonophysics, 183, 67-76.
Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24, 949-952.
Tsai, Y. B. (1986). Seismotectonic of Taiwan. Tectonophysics, 125, 17-37.
Wang, W. H. and Chen, C. H. (1990). The volcanology and fission track age dating of pyroclastic deposits in Tatun Volcano Group, northern Taiwan. Acta Geologica Taiwanica, 28, 1-30.
Wells, D. L., and Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974-1002.
Yang, Y. S. and Wang, T. K. (1998). Crustal velocity variation of the western Philippine Sea Plate from TAICRUST OBS/MCS Line 23. Terr. Atmos. Oceanic Sci., 9, 379-394.