| 研究生: |
謝秉穎 Hsieh, Ping-Yin |
|---|---|
| 論文名稱: |
泰勒模型模擬F.C.C.金屬中剪切帶之織構研究 Texture Simulation of Shear Bands in F.C.C. Metals Using Taylor-Based Models |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | Taylor模型 、剪切帶 、F.C.C.金屬單晶 、變形織構 |
| 外文關鍵詞: | Taylor model, Shear band, F.C.C. single crystal, Deformation texture |
| 相關次數: | 點閱:130 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為探討剪切帶形成過程之形變方式與織構演化,本研究係以變形機制為滑移系統、滑移與雙晶系統主導之Taylor模型、Taylor機械雙晶模型為基礎,與剪切帶相關幾何模型結合,分別針對高、低疊差能F.C.C.金屬C(112)[11-1]單晶(Copper方位單晶)產生之Copper型、Brass型剪切帶之過程之變形織構進行模擬並與相關文獻比較討論。
Copper型剪切帶形成前之C方位單晶平面應變軋延使方位轉至D(4 4 11)[11 11 -8]方位穩定,並以D方位為起始方位應用剪切帶四種微結構幾何模型模擬剪切帶產生,不同結構模型影響晶體轉動方向,使D方位繞±TD轉動,+TD接近(112)[-1-11]而-TD至(110)[00-1]。
Brass型剪切帶形成前之C方位單晶平面應變軋延方位轉至D方位與啟動雙晶系統(111)[11-2]之雙晶方位(26 26 5)[-5 -5 52],吻合實驗,可將整體結構轉27˚使層狀結構平行RD而使用基材方位(111)[11-2]為起始方位應用剪切帶四種微結構幾何模型模擬剪切帶產生,同樣,不同結構模型影響晶體轉動方向,部分使基材方位(111)[11-2]、雙晶方位(111)[-1-12]轉為(114)[22-1]、(110)[001];部分則使基材方位(111)[11-2]、雙晶方位(111)[-1-12]轉為(110)[00-1]、(11-4)[221]。兩者方位的轉動符合實驗上所述{111}<112>層狀結構轉為{110}<001>與{114}<221>。
Shear band considered as important effect in deformation texture, we use Taylor-based models to investigate texture evolution of Copper and Brass-type shear band in F.C.C. C-orientation (112)[11-1] single crystal. Taylor-based models combine with plane strain condition and four geometric models to simulate texture evolution of shear bands forming at different stack fault energy.
The results indicate before Copper-type shear bands forming, C-orientation rotates to D-orientation (4 4 11)[11 11 -8]. After shear bands forming, different geometric models make D-orientation rotate around ±TD from near (112)[-1-11] to (110)[00-1] according with experiments.
The results also show before Brass-type shear bands forming, C-orientation rotates to D-orientation and Twin-orientation (26 26 5)[-5 -5 52] which is activated twin system (111)[11-2]. So it can rotate whole structure 27˚ making twin-matrix layers parallel to RD, and then use matrix orientation (111)[11-2] to next stage. After shear bands forming, some geometric models make matrix orientation (111)[11-2] and twin orientation (111)[-1-12] rotate to (114)[22-1] and (110)[001]. Another models make matrix and twin orientation rotate to (110)[00-1] and(11-4)[221]. Both of them accord with experiments describing {111}<112> transfers to {110}<001> and {114}<221>.
1. F. Adcock, ' THE INTERNAL MECHANISM OF COLD-WORK AND RECRYSTALLIZATION IN CUPRO-NICKEL ' , Journal of the Institute of Metals, 27, pp. 73-105, 1922.
2. K. Brown, ' ROLE OF DEFORMATION AND SHEAR BANDING IN STABILITY OF ROLLING TEXTURES OF ALUMINUM AND AN AL-0.8% MG ALLOY ' , Journal of the Institute of Metals, 100, pp. 341-345, 1972.
3. P.S. Mathur and W.A. Backofen , ' MECHANICAL CONTRIBUTIONS TO PLANE-STRAIN DEFORMATION AND RECRYSTALLIZATION TEXTURES OF ALUMINUM-KILLED STEEL ' , Metallurgical Transactions, 4, pp. 643-651, 1973.
4. A. Duckham, R.D. Knutsen and O. Engler, ' INFLUENCE OF DEFORMATION VARIABLES ON THE FORMATION OF COPPER-TYPE SHEAR BANDS IN AL-1MG ' , Acta Materialia, 49, pp. 2739-2749, 2001.
5. O. Engler, ' DEFORMATION AND TEXTURE OF COPPER-MANGANESE ALLOYS ' , Acta Materialia, 48, pp. 4827-4840, 2000.
6. K. Lucke and O. Engler, ' EFFECTS OF PARTICLES ON DEVELOPMENT OF MICROSTRUCTURE AND TEXTURE DURING ROLLING AND RECRYSTALLIZATION IN FCC ALLOYS ' , Materials Science and Technology, 6, pp. 1113-1130, 1990.
7. P. Wagner, O. Engler and K. Lucke, ' TEXTURE DEVELOPMENT IN AL-3% MG INFLUENCED BY SHEAR BANDS ' , Textures and Microstructures, 14-18, pp. 927-932, 1991.
8. A. Weidner and P. Klimanek, ' SHEAR BANDING AND TEXTURE DEVELOPMENT IN COLD-ROLLED α-BRASS ' , Scripta Materialia, 38, pp. 851-856, 1998.
9. F.J. Humphreys and M. Hatherly, ' RECRYSTALLIZATION AND RELATED ANNEALING PHENOMENA ' , Elsevier, Boston, 2004.
10. B. J. Duggan, M. Hatherly, W. B. Hutchinson and P. T. Wakefiled, ' DEFORMATION STRUCTURE AND TEXTURES IN COLD-ROLLED 70:30 BRASS ' , Metal Science, 12, pp. 343-351, 1978.
11. A. A. Ridha and W. B. Hutchinson, ' RECRYSTALLIZATION MECHANISMS AND THE ORIGIN OF CUBE TEXTURE IN COPPER ' , Acta Metallurgica, 30, pp. 1929-1939, 1982.
12. T. Haratani, W. B. Hutchinson, I. L. Dillamore and P. Bate, ' CONTRIBUTION OF SHEAR BANDING TO ORIGIN OF GOSS TEXTURE IN SILICON-IRON ' , Metal Science, 18, pp. 57-65, 1984.
13. H. Paul and J.H. Driver, ' THE STRUCTURE OF SHEAR BANDS IN TWINNED FCC CRYSTALS AND THEIR INFLUENCE ON RECRYSTALLIZATION NUCLEATION ' , Bulletin of the Polish Academy of Sciences, Technical Sciences, 54, pp. 209-220, 2006.
14. H. Paul, J.H. Driver and Z. Jasienski, ' SHEAR BANDING AND RECRYSTALLIZATION NUCLEATION IN A CU-2% AL ALLOY SINGLE CRYSTAL ' , Acta Materialia, 50, pp. 815-830, 2002.
15. J. Hjelen, R. Orsund and E. Nes, ' OVERVIEW NO-93 - ON THE ORIGIN OF RECRYSTALLIZATION TEXTURES IN ALUMINUM ' , Acta Metallurgica et Materialia, 39, pp. 1377-1404, 1991.
16. K. Ushioda, H. Ohsone and M. Abe, Proceeding of 6th ICOTOM, Tokyo, 1, pp. 829, 1981.
17. B. J. Duggan, W. B. Hutchinson and M. Hatherly, ' RECRYSTALLIZATION STUDIES IN 70:30 BRASS USING A HIGH VOLTAGE ELECTRON MICROSCOPE ' , Scripta Metallurgica, 12, pp. 293-295, 1978.
18. Z. Jasienski, H. Paul, A. Piatkowski and A. Litwora, ' MICROSTRUCTURE AND TEXTURE OF COPPER SINGLE CRYSTAL OF (112)[1 ̅1 ̅1] ORIENTATION UNDERGOING CHANNEL-DIE COMPRESSION AT 77K ' , Journal of Materials Processing Technology, 53, pp. 187-194, 1995.
19. G. D. Kohlhoff, A. S. Malin, K. Lucke and M. Hatherly, ' MICROSTRUCTURE AND TEXTURE OF ROLLED {112}<111> COPPER SINGLE CRYSTALS ' , Acta Metallurgica, 36, pp. 2841-2847, 1988.
20. K. Morii, H. Mecking and Y. Nakayama, ' DEVELOPMENT OF SHEAR BANDS IN FCC SINGLE CRYSTALS ' , Acta Metallurgica, 33, pp. 379-386, 1985.
21. K. Morii and Y. Nakayama, ' SHEAR BANDS AND MICROSTRUCTURE OF AL SINGLE-CRYSTALS DURING ROLLING ' , Scripta Metallurgica, 19, pp. 185-188, 1985.
22. Y. Nakayama and K. Morii, ' MICROSTRUCTURE AND SHEAR BAND FORMATION IN ROLLED SINGLE-CRYSTALS OF AL-MG ALLOY ' , Acta Metallurgica, 35, pp. 1747-1755, 1987.
23. H. Paul, H. J. Driver, C. Maurice and Z. Jasienski, ' SHEAR BAND MICROTEXTURE FORMATION IN TWINNED FACE CENTRED CUBIC SINGLE CRYSTALS ' , Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 359, pp. 178-191, 2003.
24. H. Paul, A. Morawiec, E. Bouzy, J. J. Fundenberger and A. Piatkowski, ' SHEAR BANDING IN TWINNED STRUCTURES AND THEIR INFLUENCE ON BRASS-TYPE TEXTURE ' , Materials Science Forum, 495-497, pp. 1067-1072, 2005.
25. P. Wagner, O. Engler and K. Lucke, ' FORMATION OF CU-TYPE SHEAR BANDS AND THEIR INFLUENCE ON DEFORMATION AND TEXTURE OF ROLLED FCC {112} <111> SINGLE-CRYSTALS ' , Acta Metallurgica Et Materialia, 43, pp. 3799-3812, 1995.
26. D.A. Hughes and N. Hansen, ' MICROSTRUCTURAL EVOLUTION IN NICKEL DURING ROLLING FROM INTERMEDIATE TO LARGE STRAINS ' , Metallurgical Transactions A-Physical Metallurgy and Materials Science, 24, pp. 2021-2037, 1993.
27. A.S. Malin and M. Hatherly, ' MICROSTRUCTURE OF COLD-ROLLED COPPER ' , Metal Science, 13, pp. 463-472, 1979.
28. A. Korbel, J. D. Embury, M. Hatherly, P. L. Martin and H. W. Erbsloh, ' MICROSTRUCTURAL ASPECTS OF STRAIN LOCALIZATION IN AL-MG ALLOYS ' , Acta Metallurgica, 34, pp. 1999-2009, 1986.
29. W. B. Hutchinson, B. J. Duggan and M. Hatherly, ' DEVELOPMENT OF DEFORMATION TEXTURE AND MICROSTRUCTURE IN COLD-ROLLED CU-30ZN ' , Metal Technology, 6, pp. 398-403, 1979.
30. W. Y. Yeung and B. J. Duggan, ' FLOW LOCALIZATION IN COLD-ROLLED α-BRASS ' , Materials Science and Technology, 2, pp. 552-558, 1986.
31. P. T. Wakefiled and M. Hatherly, ' MICROSTRUCTURE AND TEXTURE OF COLD-ROLLED CU-10ZN BRASS ' , Metal Science, 15, pp. 109-115, 1981.
32. P. Vanhoutte and E. Aernoudt, ' SOLUTION OF GENERALIZED TAYLOR THEORY OF PLASTIC-FLOW .3. APPLICATIONS ' , Zeitschrift fuer Metallkunde, 66, pp. 303-306, 1975.
33. P. Vanhoutte, ' SIMULATION OF ROLLING AND SHEAR TEXTURE OF BRASS BY TAYLOR THEORY ADAPTED FOR MECHANICAL TWINNING ' , Acta Metallurgica, 26, pp. 591-604, 1978.
34. J.G. Sevillano, P. Vanhoutte and E. Aernoudt, ' LARGE STRAIN WORK-HARDENING AND TEXTURES ' , Progress in Materials Science, 25, pp. 69-412, 1980.
35. G.I. Taylor, ' PLASTIC STRAIN IN METALS ' , Journal of the Institute of Metals, 62, pp. 307-324, 1938.
36. 陳志慶, ' 奈米鋁材料塑性行為之探討 ' , 國立成功大學材料科學及工程學系, 碩士論文, 2006.
37. W.F. Hosford, ' MECHANICAL BEHAVIOR OF MATERIALS ' , Cambridge University Press, New York, 2005.
38. G.Y. Chin, W.F. Hosford and D.R. Mendorf, ' ACCOMMODATION OF CONSTRAINED DEFORMATION IN FCC METALS BY SLIP AND TWINNING ' , Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 309, pp. 433-456, 1969.
39. B. Bay, N. Hansen, D. A. Hughes and D. Kuhlmannwilsdorf, ' OVERVIEW NO-96 - EVOLUTION OF FCC DEFORMATION STRUCTURES IN POLYSLIP ' , Acta Metallurgica Et Materialia, 40, pp. 205-219, 1992.
40. Q. Liu, D.J. Jensen and N. Hansen, ' EFFECT OF GRAIN ORIENTATON ON DEFORMATION STRUCTURE IN COLD-ROLLED POLYCRYSTALLINE ALUMINIUM ' , Acta Materialia, 46, pp. 5819-5838, 1998.
41. B. Bay, N. Hansen and D. Kuhlmannwilsdorf, ' DEFORMATION STRUCTURES IN LIGHTLY ROLLED PURE ALUMINUM ' , Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 113, pp. 385-397, 1989.
42. P.J. Hurley and F.J. Humphreys, ' THE APPLICATION OF EBSD TO THE STUDY OF SUBSTRUCTURAL DEVELOPMENT IN A COLD-ROLLED SINGLE-PHASE ALUMINIUM ALLOY ' , Acta Materialia, 51, pp. 1087-1102, 2003.
43. G.I. Rosen, D. J. Jensen, D. A. Hughes and N. Hansen, ' MICROSTRUCTURE AND LOCAL CRYSTALLOGRAPHY OF COLD-ROLLED ALUMINUM ' , Acta Metallurgica Et Materialia, 43, pp. 2563-2579, 1995.
44. S.V. Harren, H.E. Deve and R.J. Asaro, ' SHEAR BAND FORMATION IN PLANE-STRAIN COMPRESSION ' , Acta Metallurgica, 36, pp. 2435-2480, 1988.
45. 張智星, ' MATLAB程式設計. 入門篇 ' , 碁峰資訊, 台灣, 2010.
46. P. Vanhoutte and E. Aernoudt, ' CONSIDERATIONS ON CRYSTAL AND STRAIN SYMMETRY IN CALCULATION OF DEFORMATION TEXTURES WITH TAYLOR THEORY ' , Materials Science and Engineering, 23, pp. 11-22, 1976.