簡易檢索 / 詳目顯示

研究生: 趙乾言
Chao, Chian-Yen
論文名稱: 用於位元錯誤所造成CCSDS衛星影像破損之修復演算法
A Restoration Algorithm for Bit-Error-Caused Damages in CCSDS Satellite Images
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 56
中文關鍵詞: CCSDS影像處理影像修復
外文關鍵詞: CCSDS, image processing, image restoration
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太空資料系統諮詢委員會 (CCSDS) 提出了無失真且高效能的太空影像壓縮標準 (CCSDS-ICS),並廣泛的使用在衛星遙測影像的傳輸上,然而,原始的CCSDS-ICS缺乏容錯能力,甚至單一的位元錯誤就能造成壓縮檔嚴重的損壞。在這篇論文中,我們將要修復因CCSDS-ICS壓縮檔損壞所造成的大範圍影像破損。 Neighborhood Similar Pixel Interpolator (NSPI) 演算法原本是用於修復Landsat ETM+ SLC-off的破損影像,根據我們破損影像的特性,我們提出一個適應性搜尋視窗改良NSPI演算法取得相似像素的方式,並適用於CCSDS壓縮檔案位元錯誤造成大範圍的衛星遙測影像破損。測試結果顯示適應性搜尋視窗可以有效地減少影像修復所耗費的時間,並同時獲得較佳的修復影像品質。

    The Consultative Committee for Space Data Systems (CCSDS) proposed an image compression standard (CCSDS-ICS) which can do the efficient and lossless compression and is most widely utilized for the satellite communications so far. However, the original CCSDS-ICS is weak in the ability of error resilience that severe error propagation would be caused by even an incorrect bit in the compressed file. In this thesis, the bit-error-caused damages in the images are going to be concealed. The Neighborhood Similar Pixel Interpolator (NSPI) was originally developed to fill the gaps owing to the failed Landsat 7 ETM+ Scan Line Corrector (SLC-off). To make it work well on the large contaminated areas in the satellite images, an adaptive searching window is proposed to improve the way of the NSPI method to acquire the similar pixels. Furthermore, an automated system is designed to do the image rectification, error detection and error concealment for the bit-error-caused damages in the images. The results show that the proposed algorithm can reduce the processing time to restore, and obtain better visual quality of the restored images.

    摘要.............. i Abstract.............. ii Acknowledgements............ iii Table of Contents............. iv List of Tables............. vi List of Figures............ vii 1 Introduction............ 1 2 Background and Related Works......... 7 2.1 Formosat satellite.......... 7 2.2 CCSDS-ICS and Its Error Condition....... 8 2.3 Overview of Error Concealment Method....... 14 2.3.1 Inpainting Based Method....... 14 2.3.2 Multi-spectral and Multi-temporal Based Method.... 16 3 The Proposed Algorithm........... 17 3.1 Image Recti_cation........... 19 3.2 Error Detection........... 21 3.3 Error Concealment........... 22 3.3.1 Neighborhood Similar Pixel Interpolator (NSPI)... 23 3.3.2 The Proposed Algorithm........ 26 4 Experimental Results........... 31 4.1 Experimental Result of Simulated Images....... 31 4.2 Experimental Result of General Images...... 49 5 Conclusions and Future Works.......... 53 5.1 Conclusions........... 53 5.2 Future Works............ 53 References............. 55

    [1] [Online]. Available: http://www.restec.or.jp/english/knowledge/sensing02.html
    [2] [Online]. Available: http://www.astrium-geo.com/en/
    [3] [Online]. Available: http://www.pancroma.com
    [4] Image Data Compression Draft Recommended Standard. CCSDS 121.0-B-2 (BlueBook) Issue 2, 2012. [Online]. Available: http://public.ccsds.org/publications/archive/121x0b2.pdf
    [5] J. Chen, X. Zhu, J. E. Vogelmann, F. Gao, and S. Jin, “A simple and effective method for filling gaps in landsat etm+ slc-off images," Remote Sensing of Environment, vol. 115, no. 4, pp. 1053 - 1064, 2011. [Online]. Available:
    http://www.sciencedirect.com/science/article/pii/S0034425710003482
    [6] L. Di Stefano and S. Mattoccia, “Fast template matching using bounded partial correlation," Machine Vision and Applications, vol. 13, no. 4, pp. 213-221, 2003. [Online]. Available: http://dx.doi.org/10.1007/s00138-002-0070-5
    [7] W. Fan, J. Chen, and W. Ju, “A pixel missing patch inpainting method for remote sensing image," in Geoinformatics, 2011 19th International Conference on, June
    2011, pp. 1-4.
    [8] F. Gao, J. Masek, M. Schwaller, and F. Hall, “On the blending of the landsat and modis surface reflectance: predicting daily landsat surface reflectance," Geoscience and Remote Sensing, IEEE Transactions on, vol. 44, no. 8, pp. 2207-2218, Aug 2006.
    [9] W. Hu, M. Li, Y. Liu, Q. Huang, and K. Mao, “A new method of restoring etm+ slc-off images based on multi-temporal images," in Geoinformatics, 2011 19th International Conference on, June 2011, pp. 1-4.
    [10] G. S. James Storey, Pasquale Scaramuzza, “Landsat 7 scan line corrector-off gap-filled product," Global Priorities in Land Remote Sensing, October 2005.
    [11] C.-H. Lin, K.-H. Lai, Z.-B. Chen, and J.-Y. Chen, “Patch-based information reconstruction of cloud-contaminated multitemporal images," Geoscience and Remote
    Sensing, IEEE Transactions on, vol. 52, no. 1, pp. 163-174, Jan 2014.
    [12] C.-H. Lin, P.-H. Tsai, K.-H. Lai, and J.-Y. Chen, “Cloud removal from multitemporal satellite images using information cloning," Geoscience and Remote Sensing, IEEE Transactions on, vol. 51, no. 1, pp. 232-241, Jan 2013.
    [13] L. Lorenzi, F. Melgani, and G. Mercier, “Inpainting strategies for reconstruction of missing data in vhr images," Geoscience and Remote Sensing Letters, IEEE, vol. 8, no. 5, pp. 914-918, Sept 2011.
    [14] A. Maalouf, P. Carre, B. Augereau, and C. Fernandez-Maloigne, “A bandelet-based inpainting technique for clouds removal from remotely sensed images," Geo-science and Remote Sensing, IEEE Transactions on, vol. 47, no. 7, pp. 2363-2371,
    July 2009.
    [15] X. Zhu, F. Gao, D. Liu, and J. Chen, “A modified neighborhood similar pixel interpolator approach for removing thick clouds in landsat images," Geoscience and Remote Sensing Letters, IEEE, vol. 9, no. 3, pp. 521-525, May 2012.

    下載圖示 校內:2019-07-31公開
    校外:2019-07-31公開
    QR CODE