簡易檢索 / 詳目顯示

研究生: 陳義諴
Chen, Yi-Hsien
論文名稱: 基於模糊理論實現以形狀記憶合金致動之人造手指姿態與接觸力控制
Fuzzy Logic Based Gesture and Contact Force Control of an SMA Actuated Artificial Finger
指導教授: 田思齊
Tien, Szu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 形狀記憶合金人造手模糊控制
外文關鍵詞: Shape Memory Alloy, artificial finger, fuzzy control
相關次數: 點閱:123下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要研究目的在於以形狀記憶合金做為人造手的致動器,並透過模糊邏輯推論達到人造手指的姿態與指尖接觸力控制。本文中的手指姿態與其指尖的位置有關,而指尖受力情況又與手指姿態有關,因此手指指尖位置影響了手指姿態與其受
    力情形;本文中使用的人造手指,其姿態由驅動各關節的形狀記憶合金形變量決定,由此便可以透過控制形狀記憶合金的形變量達到控制手指姿態與指尖受力情形。然而,形狀記憶合金在形變的過程中具有遲滯現象,增添控制難度,因此我們透過inverse Preisach模型補償其遲滯現象。此外,為了解決建模誤差與干擾對系統的影響,在此我們透過模糊控制器,使控制結果接近我們的目標。本文中指尖定位是透過影像偵測指尖位置,經由逆向運動學模型求得形狀記憶合金的形變量。而接觸力控制是透過靜力平衡模型,並由形狀記憶合金張力轉換至其形變量。兩者皆透過模糊控制器控制形狀記憶合金形變量來實現。實驗結果顯示,本文提出的控制方法可使指尖位置與接觸力均達到設定目標,並且準確至感測器的解析度內。

    The purpose of this thesis is to control a shape memory alloy (SMA) actuated artificial hand to achieve precision positioning and desired contact force with fuzzy logic inference.
    In this thesis, the gesture of the artificial finger is determined by the position of the fingertip, and the contact force of the fingertip is related to the gesture of the artificial finger; therefore, the gesture and the contact force of the artificial finger are affected by the position of the fingertip. Besides, the gesture of the artificial finger is determined by deformations of SMAs connected to each joints, and consequently controlling the deformations of SMAs will control the gesture of the artificial finger and the contact force of the fingertip.
    However, hysteresis in the SMA causes the difficulty in controlling the deformation of SMAs, so inverse Preisach model is utilized to compensate for the hysteresis. Moreover, fuzzy logic controller is used to solve problems from modeling errors and disturbances such that the control results would be close to our goal.
    In the precision positioning experiment, the position of the fingertip is detected from the camera image, and then the deformations of the SMAs are calculated with inverse kinematic model. In the contact force control experiment, deformations of SMAs are converted from its tension when the artificial finger is in static equilibrium. Both of the experiments are conducted with the proposed fuzzy controller to control the deformations of SMAs.
    Experimental results show that, with the proposed control scheme, both position and contact force can achieve the desired values with accuracy in sensors’ resolution.

    圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 現有的人造手. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.1 Utah/MIT hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Rutgers Hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 NTU hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.4 Barrett Hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.5 OCU Hand II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 以形狀記憶合金(SMA)實現人造手的致動. . . . . . . . . . . . . . . . . . 9 1.4 以影像做為感測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 研究目標. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 本文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 第二章設計與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 人類手部構造. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 人造手機構設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 指骨尺寸. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 各關節自由度及指骨致動方式. . . . . . . . . . . . . . . . . . . . . 13 2.3 人造手的運動學分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 SMA形變量與關節角度變化量之計算. . . . . . . . . . . . . . . . . 15 2.3.2 正向運動學. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3 逆向運動學. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 人造手的接觸力學模型與靜力學分析. . . . . . . . . . . . . . . . . . . . . 21 2.4.1 接觸力學模型公式推導. . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.2 人造手接觸後的靜力分析. . . . . . . . . . . . . . . . . . . . . . . 27 第三章影像處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1 背景處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 影像濾波. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 邊緣偵測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 霍氏轉換. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 第四章控制方法與模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1 SMA原理與建模. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.1 SMA形變原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.2 SMA建模. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.1 模糊控制器架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.2 歸屬函數與模糊規則表. . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.3 模糊控制器的輸出. . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3 人造手指的姿態控制模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . 51 第五章實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.1 接觸力學模型參數擬合測試結果. . . . . . . . . . . . . . . . . . . . . . . . 58 5.2 定位與接觸力控制實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 第六章結論與未來工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2 未來工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 附錄A 人造手的動力學分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 附錄B 模糊控制器輸出. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 附錄C 人造手相關實驗器材. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    [1] S. C. Jacobsen, E. K. Inversen, D. F. Knutti, K. B. Johnson, and K. B. Biggers. Design of the utah/mit dextrous hand. IEEE Int. Conf. on Robotics and Automation,
    3:1520–1532, 1986.
    [2] S. C. Jacobsen, J. E. Wood, D. F. Knutti, and K. B. Biggers. The utah/mit dexterous hand: work in progress. International Journal of Robotics Research,4:21–50, 1984.
    [3] K. J. D. Laurentis and C. Mavroidis. Mechanical design of a shape memory alloy actuated prosthetic hand. Technology and Health Care, 10:91–106, 2002.
    [4] K.J.D. Laurentis and C. Mavroidis. Rapid fabrication of a non-assembly robotic hand with embedded components. Assembly Automation, 24:394–405, 2004.
    [5] L. R. Lin and H. P. Huang. Ntu hand: A new design of dexterous hands. Journal of Mechanical Design, 120:282–292, 1998.
    [6] Inc. Barrett Technology. BarrettHand—BH8-SERIES User Manual. Barrett Technology,Inc.
    [7] R. Mahmoud, A. Ueno, and S. Tatsumi. An assistive tele-operated anthropomorphic robot hand: Osaka city university hand ii. Proceedings of the 6th international conference on Human-robot interaction, 2011.
    [8] T. D. White, M. T. Black, and P. A. Folkens. Human osteology. Academic Press,1991.
    [9] P. K. Levangie and C. C. Norkin. Joint Structure and Function: A comprehensive Analysis. Philadelphia, PA, USA: F.A Davis Company, 4th edition, 2005.
    [10] K. H. Kao. Desing and visual servo control of a sma actuated biomimetic hand.Master’s thesis, National Cheng Kung University, 2012.
    [11] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Pearson Education Taiwan Ltd, 2008.
    [12] K. H. Liang. Positioning and tracking control of sma based actuator. Master’s thesis, National Cheng Kung University, 2011.
    [13] C. M. Ho. Visual servo based gesture control of an sma actuated artificial hand.
    Master’s thesis, National Cheng Kung University, 2013.
    [14] S. B. Niku. Introduction to Robotics: Analysis, Control, Applications,2nd Edition.John Wiley and Sons, 2010.
    [15] J. H. Kim and S. J. Oh. A fuzzy pid controller for nonlinear and uncertain systems.Soft Computing, 4:123–129, 2000.
    [16] R. Bischoff et.al. The kuka-dlr lightweight robot arm – a new reference platform for robotics research and manufacturing. Proc. 41st Int’l Symp. Robotics (ISR), and
    Sixth German Conf. Robotics (ROBOTIK), pages 1–8, 2010.
    [17] E. M. Michael. Robotic surgery: urologic implications. Journal of Endourology,17:695–708, 2003.
    [18] Y. S. Kwoh, J. Hou, E. A. Jonckheere, and S. Hayati. A robot with improved absolute positioning accuracy for ct guided stereotactic brain surgery. Biomedical
    Engineering, 35, 1998.
    [19] J. M. Sackier and Y. Wang. Robotically assisted laparoscopic surgery. From concept to development. Springer-Verlag, 1996.
    [20] Butterfaß P. J., M. Fischer, M. Grebenstein, S.Haidacher, and G. Hirzinger. Design and experiences with dlr hand ii. World Automation Congress, 2004.
    [21] Shadow Robot Company. Design of a dexterous hand for advanced clawar applications.Shadow Robot Company, 2003.
    [22] K. Ikuta. Micro/miniature shape memory alloy actuator. IEEE Int. Conf. OnRobotics and Automation, 3:2156–2161, 1990.
    [23] J. Ortin and L. Delaey. Hysteresis in shape-memory alloys. International Journal of Non-Linear Mechanics, 37:1275–1281, 2002.
    [24] V. Bundhoo. Design and evaluation of a shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers. Master’s thesis, University of Mauritius, 1999.
    [25] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. Robotics:Control,Sensing,Vision,and Intelligence. McGraw-Hill Book Compant, 1987.
    [26] D. Erickson, M. Weber, and I. Sharf. Contact stiffness and damping estimation for robotic systems. International Journal of Robotics Research, 22:41–57, 2003.
    [27] S. Polushko, J. Viba, O. Kononova, and S. Sokolova. Rigid body impact models partially considering deformation. Estonian Academy of Science, Engineering,13:140–155, 2007.
    [28] O. Khatib. Inertial properties in robotic manipulation: An object-level framework.The International Journal of Robotics Research, 14:19–36, 1995.
    [29] J. T. Wenz and D. Hughesy. Preisach modeling of piezoceramic and shape memory alloy hysteresis. Smart Materials and Structures, 6:287–300, 1997.
    [30] L. A. Zadeh. Fuzzy sets. Inform. Contr., 8:338–353, 1965.
    [31] E. H. Mamdani. Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the IEEE, 121:1585–1588, 1974.
    [32] W. V. Leekwijck and E. E. Kerre. Defuzzification: criteria and classification. Fuzzy Sets and Systems, 108:159–178, 1999.
    [33] M. J. Garcia. Engineering rubber bushing stiffness formulas including dynamic amplitude dependence. Master’s thesis, Royal Institute of Technology, Stockholm,
    2006.
    [34] A. R. Shahin, P. H. Meckl, and J. D. Jones. Enhanced cooling of shape memory alloy wires using semiconductor ”heat pump” modules. Intelligent Material Systems
    and Structures, 5:95, 1994.

    下載圖示 校內:2016-07-24公開
    校外:2016-07-24公開
    QR CODE