| 研究生: |
陳義諴 Chen, Yi-Hsien |
|---|---|
| 論文名稱: |
基於模糊理論實現以形狀記憶合金致動之人造手指姿態與接觸力控制 Fuzzy Logic Based Gesture and Contact Force Control of an SMA Actuated Artificial Finger |
| 指導教授: |
田思齊
Tien, Szu-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 形狀記憶合金 、人造手 、模糊控制 |
| 外文關鍵詞: | Shape Memory Alloy, artificial finger, fuzzy control |
| 相關次數: | 點閱:123 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主要研究目的在於以形狀記憶合金做為人造手的致動器,並透過模糊邏輯推論達到人造手指的姿態與指尖接觸力控制。本文中的手指姿態與其指尖的位置有關,而指尖受力情況又與手指姿態有關,因此手指指尖位置影響了手指姿態與其受
力情形;本文中使用的人造手指,其姿態由驅動各關節的形狀記憶合金形變量決定,由此便可以透過控制形狀記憶合金的形變量達到控制手指姿態與指尖受力情形。然而,形狀記憶合金在形變的過程中具有遲滯現象,增添控制難度,因此我們透過inverse Preisach模型補償其遲滯現象。此外,為了解決建模誤差與干擾對系統的影響,在此我們透過模糊控制器,使控制結果接近我們的目標。本文中指尖定位是透過影像偵測指尖位置,經由逆向運動學模型求得形狀記憶合金的形變量。而接觸力控制是透過靜力平衡模型,並由形狀記憶合金張力轉換至其形變量。兩者皆透過模糊控制器控制形狀記憶合金形變量來實現。實驗結果顯示,本文提出的控制方法可使指尖位置與接觸力均達到設定目標,並且準確至感測器的解析度內。
The purpose of this thesis is to control a shape memory alloy (SMA) actuated artificial hand to achieve precision positioning and desired contact force with fuzzy logic inference.
In this thesis, the gesture of the artificial finger is determined by the position of the fingertip, and the contact force of the fingertip is related to the gesture of the artificial finger; therefore, the gesture and the contact force of the artificial finger are affected by the position of the fingertip. Besides, the gesture of the artificial finger is determined by deformations of SMAs connected to each joints, and consequently controlling the deformations of SMAs will control the gesture of the artificial finger and the contact force of the fingertip.
However, hysteresis in the SMA causes the difficulty in controlling the deformation of SMAs, so inverse Preisach model is utilized to compensate for the hysteresis. Moreover, fuzzy logic controller is used to solve problems from modeling errors and disturbances such that the control results would be close to our goal.
In the precision positioning experiment, the position of the fingertip is detected from the camera image, and then the deformations of the SMAs are calculated with inverse kinematic model. In the contact force control experiment, deformations of SMAs are converted from its tension when the artificial finger is in static equilibrium. Both of the experiments are conducted with the proposed fuzzy controller to control the deformations of SMAs.
Experimental results show that, with the proposed control scheme, both position and contact force can achieve the desired values with accuracy in sensors’ resolution.
[1] S. C. Jacobsen, E. K. Inversen, D. F. Knutti, K. B. Johnson, and K. B. Biggers. Design of the utah/mit dextrous hand. IEEE Int. Conf. on Robotics and Automation,
3:1520–1532, 1986.
[2] S. C. Jacobsen, J. E. Wood, D. F. Knutti, and K. B. Biggers. The utah/mit dexterous hand: work in progress. International Journal of Robotics Research,4:21–50, 1984.
[3] K. J. D. Laurentis and C. Mavroidis. Mechanical design of a shape memory alloy actuated prosthetic hand. Technology and Health Care, 10:91–106, 2002.
[4] K.J.D. Laurentis and C. Mavroidis. Rapid fabrication of a non-assembly robotic hand with embedded components. Assembly Automation, 24:394–405, 2004.
[5] L. R. Lin and H. P. Huang. Ntu hand: A new design of dexterous hands. Journal of Mechanical Design, 120:282–292, 1998.
[6] Inc. Barrett Technology. BarrettHandBH8-SERIES User Manual. Barrett Technology,Inc.
[7] R. Mahmoud, A. Ueno, and S. Tatsumi. An assistive tele-operated anthropomorphic robot hand: Osaka city university hand ii. Proceedings of the 6th international conference on Human-robot interaction, 2011.
[8] T. D. White, M. T. Black, and P. A. Folkens. Human osteology. Academic Press,1991.
[9] P. K. Levangie and C. C. Norkin. Joint Structure and Function: A comprehensive Analysis. Philadelphia, PA, USA: F.A Davis Company, 4th edition, 2005.
[10] K. H. Kao. Desing and visual servo control of a sma actuated biomimetic hand.Master’s thesis, National Cheng Kung University, 2012.
[11] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Pearson Education Taiwan Ltd, 2008.
[12] K. H. Liang. Positioning and tracking control of sma based actuator. Master’s thesis, National Cheng Kung University, 2011.
[13] C. M. Ho. Visual servo based gesture control of an sma actuated artificial hand.
Master’s thesis, National Cheng Kung University, 2013.
[14] S. B. Niku. Introduction to Robotics: Analysis, Control, Applications,2nd Edition.John Wiley and Sons, 2010.
[15] J. H. Kim and S. J. Oh. A fuzzy pid controller for nonlinear and uncertain systems.Soft Computing, 4:123–129, 2000.
[16] R. Bischoff et.al. The kuka-dlr lightweight robot arm – a new reference platform for robotics research and manufacturing. Proc. 41st Int’l Symp. Robotics (ISR), and
Sixth German Conf. Robotics (ROBOTIK), pages 1–8, 2010.
[17] E. M. Michael. Robotic surgery: urologic implications. Journal of Endourology,17:695–708, 2003.
[18] Y. S. Kwoh, J. Hou, E. A. Jonckheere, and S. Hayati. A robot with improved absolute positioning accuracy for ct guided stereotactic brain surgery. Biomedical
Engineering, 35, 1998.
[19] J. M. Sackier and Y. Wang. Robotically assisted laparoscopic surgery. From concept to development. Springer-Verlag, 1996.
[20] Butterfaß P. J., M. Fischer, M. Grebenstein, S.Haidacher, and G. Hirzinger. Design and experiences with dlr hand ii. World Automation Congress, 2004.
[21] Shadow Robot Company. Design of a dexterous hand for advanced clawar applications.Shadow Robot Company, 2003.
[22] K. Ikuta. Micro/miniature shape memory alloy actuator. IEEE Int. Conf. OnRobotics and Automation, 3:2156–2161, 1990.
[23] J. Ortin and L. Delaey. Hysteresis in shape-memory alloys. International Journal of Non-Linear Mechanics, 37:1275–1281, 2002.
[24] V. Bundhoo. Design and evaluation of a shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers. Master’s thesis, University of Mauritius, 1999.
[25] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. Robotics:Control,Sensing,Vision,and Intelligence. McGraw-Hill Book Compant, 1987.
[26] D. Erickson, M. Weber, and I. Sharf. Contact stiffness and damping estimation for robotic systems. International Journal of Robotics Research, 22:41–57, 2003.
[27] S. Polushko, J. Viba, O. Kononova, and S. Sokolova. Rigid body impact models partially considering deformation. Estonian Academy of Science, Engineering,13:140–155, 2007.
[28] O. Khatib. Inertial properties in robotic manipulation: An object-level framework.The International Journal of Robotics Research, 14:19–36, 1995.
[29] J. T. Wenz and D. Hughesy. Preisach modeling of piezoceramic and shape memory alloy hysteresis. Smart Materials and Structures, 6:287–300, 1997.
[30] L. A. Zadeh. Fuzzy sets. Inform. Contr., 8:338–353, 1965.
[31] E. H. Mamdani. Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the IEEE, 121:1585–1588, 1974.
[32] W. V. Leekwijck and E. E. Kerre. Defuzzification: criteria and classification. Fuzzy Sets and Systems, 108:159–178, 1999.
[33] M. J. Garcia. Engineering rubber bushing stiffness formulas including dynamic amplitude dependence. Master’s thesis, Royal Institute of Technology, Stockholm,
2006.
[34] A. R. Shahin, P. H. Meckl, and J. D. Jones. Enhanced cooling of shape memory alloy wires using semiconductor ”heat pump” modules. Intelligent Material Systems
and Structures, 5:95, 1994.