簡易檢索 / 詳目顯示

研究生: 黃顥
Huang, Hao
論文名稱: 使用STAR探測器在質心能量為200 GeV的質子質子對撞中利用粒子噴流研究J/ψ粒子的生成
Study of J/ψ production with jet activity in pp collisions at √s = 200 GeV in the STAR experiment
指導教授: 楊毅
Yang, Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 78
中文關鍵詞: STARquarkoniumJ/ψjet activity
外文關鍵詞: STAR, quarkonium, J/ψ, jet activity
相關次數: 點閱:209下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於quarkonium 產生的機制中包含微擾和非微擾過程的發展,所以仍然是個重要的研究課題。此外,從Color Singlet Model (CSM) 和Color Octet Mechanism (COM)產生的quarkonium,由於輻射出的高動量parton 數量有所差異,會導致jetactivity(每個event的jet數量)有所不同,因此值得利用jet進行相關的研究來區分quarkonium不同的產生機制。在這份研究中,我們使用STAR實驗在2015年收集到的由質子-質子在200 GeV質心能量對撞的數據,利用jet activity研究J/ψ介子在雙渺子衰變的末態下的生成截面(production cross section),並將結果與由PYTHIA 8函式庫得到的非相對論性量子色動力學(non-relativistic QCD,NRQCD)的分布做比較。

    The production mechanism of quarkonium is still an important topic to investigate since it evolves with both perturbative and non-perturbative processes. Moreover, quarkonium production from Color Singlet Model (CSM) and Color Octet Mechanism (COM) should result in different jet activity (the number of jets per event) due to different number of emitted hard partons, so it is worthy to perform the study associated with jets to differentiate different production mechanisms of quarkonium. In this analysis, we studied the production cross section of J/ψ via dimuon decay channel with jet activity by using the data of p+p collisions at √s = 200 GeV collected by the STAR experiment in 2015 and compared the results using the non-relativistic QCD (NRQCD) formalism which implemented by the PYTHIA 8 package.

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Theoretical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . 2 2.2 Quarkonium and the J/ψ meson . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 J/ψ production associated with jet . . . . . . . . . . . . . . . . . . . . . . 4 3 Experimental apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 Relativistic Heavy Ion Collider (RHIC) . . . . . . . . . . . . . . . . . . . 9 3.2 The Solenoid Tracker At RHIC . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Time Projection Chamber, TPC . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Magnet System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 Time-of-Flight, TOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.6 Muon Telescope Detector, MTD . . . . . . . . . . . . . . . . . . . . . . . 13 4 Analysis setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 Vertex and track quality selections . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Muon candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.1 Likelihood ratio method . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Official STAR simulated MC sample . . . . . . . . . . . . . . . . . . . . . 24 4.4 PYTHIA sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 J/ψ production cross section as a function of jet activity . . . . . . . . . . . . . 26 5.1 Jet reconstruction and J/ψ signal extraction . . . . . . . . . . . . . . . . . 26 5.2 Corrected J/ψ yield in different jet activity . . . . . . . . . . . . . . . . . 27 5.2.1 VPD efficiency and vertex finding efficiency . . . . . . . . . . . . 29 5.2.2 TPC tracking efficiency . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.3 MTD matching efficiency . . . . . . . . . . . . . . . . . . . . . . 32 5.2.4 MTD trigger efficiency . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.5 MTD response efficiency . . . . . . . . . . . . . . . . . . . . . . . 34 5.2.6 Muon identification efficiency . . . . . . . . . . . . . . . . . . . . 40 5.2.7 J/ψ kinematic acceptance . . . . . . . . . . . . . . . . . . . . . . 41 5.2.8 MTD geometry acceptance . . . . . . . . . . . . . . . . . . . . . . 43 5.2.9 Closure test of efficiency and acceptance . . . . . . . . . . . . . . 44 5.2.10 Signal extraction of corrected J/ψ yield . . . . . . . . . . . . . . . 46 5.3 Unfolding for correction of jet activity . . . . . . . . . . . . . . . . . . . . 49 5.3.1 J/ψ and jets in the PYTHIA events . . . . . . . . . . . . . . . . . 49 5.3.2 pT resolution of muons and hadrons . . . . . . . . . . . . . . . . . 50 5.3.3 TPC efficiencies of hadrons . . . . . . . . . . . . . . . . . . . . . 58 5.3.4 The additional modification of hadron pT . . . . . . . . . . . . . . 59 5.3.5 Response matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.6 Closure test of the response matrices . . . . . . . . . . . . . . . . . 60 5.3.7 The unfolded result of jet activity . . . . . . . . . . . . . . . . . . 62 6 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1 Signal extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 Detector efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3 The iterations of unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4 Hadron pT modification for response matrices . . . . . . . . . . . . . . . . 69 6.5 Total uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7 Results and Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.1 Results and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    [1] K. Olive et al., “Review of Particle Physics,” Chinese Physics C, vol. 38, p. 090001, 2014.
    [2] A. Mocsy, P. Petreczky, and M. Strickland, “Quarkonia in the Quark Gluon Plasma,” International Journal of Modern Physics A, vol. 28, 2013.
    [3] “Particle polarizations in LHC physics.” [Online]. Available: https://indico.cern.ch/event/298327/contributions/680607/attachments/560916/772746/LIP_curso_polarization.pdf
    [4] CMS Collaboration, “J/ψ and ψ(2S) production in pp collisions at √s = 7 TeV,” Journal of High Energy Physics, vol. 2012, p. 11, 2012.
    [5] CMS Collaboration , “Measurement of the prompt J/ψ and ψ(2S) polarizations in pp collisions at √s = 7 TeV,” Physics Letters B, vol. 727, p. 381, 2013.
    [6] M. Thomson, Modern Particle Physics. Cambridge University Press, 2013.
    [7] LHCb Collaboration, “Study of J/ψ Production in Jets,” Physical Review Letters, vol. 118, p. 192001, 2017.
    [8] “J/ψ in jets in p+p collisions at √s = 500 GeV by STAR.” [Online]. Available: https://indico.cern.ch/event/751767/contributions/3770958/
    [9] CMS Collaboration, “Study of J/ψ meson production inside jets in pp collisions at √s = 8 TeV,” Physics Letters B, vol. 804, p. 135409, 2020.
    [10] K. Hübner et al., The Largest Accelerators and Colliders of Their Time. Springer International Publishing, 2020, vol. 3, pp. 585–660.
    [11] M. Anderson et al., “The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 499, no. 2-3, pp. 659–678, 2003.
    [12] P. Križan, “Overview of particle identification techniques,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 706, pp. 48–54, 2013.
    [13] Y. Wang, Q. Zhang, D. Han, F. Wang, Y. Yu, P. Lyu, and Y. Li, “Status of technology of MRPC time of flight system,” Journal of Instrumentation, vol. 14, no. 06, p. C06015, 2019.
    [14] L. Ruan et al., “Perspectives of a mid-rapidity dimuon program at the RHIC: a novel and compact muon telescope detector,” Journal of Physics G: Nuclear and Particle Physics, vol. 36, no. 9, p. 095001, 2009.
    [15] T. Sjöstrand, S. Mrenna, and P. Skands, “A brief introduction to PYTHIA 8.1,” Computer Physics Communications, vol. 178, no. 11, pp. 852–867, 2008.
    [16] P. Faccioli, C. Lourenço, J. Seixas, and H. K. Wöhri, “Towards the experimental clarification of quarkonium polarization,” The European Physical Journal C, vol. 69, no. 3, pp. 657–673, 2010.
    [17] ALICE Collaboration, “Measurement of the inclusive J/ψ polarization at forward rapidity in pp collisions at √s = 8 TeV,” The European Physical Journal C, vol. 78, p. 562, 2018.
    [18] J. J. Aubert et al., “Experimental Observation of a Heavy Particle J,” Physical Review Letters, vol. 33, p. 1404, 1974.
    [19] J. E. Augustin et al., “Discovery of a Narrow Resonance in e+e− Annihilation,” Physical Review Letters, vol. 33, p. 1406, 1974.
    [20] L. Gang, W. ShuangTe, S. Mao, and L. JiPing, “Prompt heavy quarkonium production in association with a massive (anti)bottom quark at the LHC,” Physical Review D, vol. 85, p. 074026, 2012.
    [21] G. C. Nayak, J.-W. Qiu, and G. Sterman, “NRQCD Factorization and Velocity dependence of NNLO Poles in Heavy Quarkonium Production,” Physical Review D, vol. 74, p. 074007, 2006.
    [22] G. T. Bodwin, E. Braaten, and J. Lee, “Comparison of the colorevaporation model and the NRQCD factorization approach in charmonium production,” Physical Review D, vol. 72, p. 014004, 2005.
    [23] J.-P. Lansberg, “New observables in inclusive production of quarkonia,” Physics Reports, vol. 889, pp. 1–106, 2020.
    [24] F. Bergsma et al., “The STAR detector magnet subsystem,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 499, no. 2, pp. 633–639, 2003.
    [25] R. Ma, “Analysis Note: Cold nuclear matter effect for J/ψ in p+Au collisions at √sNN = 200 GeV measured by the STAR experiment,” https://drupal.star.bnl.gov/STAR/system/files/JpsiRpA_AN_v4.pdf.
    [26] T. Huang, R. Ma, B. Huang, X. Huang, L. Ruan, T. Todoroki, Z. Xu, C. Yang, S. Yang, Q. Yang, Y. Yang, and W. Zha, “Muon identification with Muon Telescope Detector at the STAR experiment,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 833, pp. 88–93, 2016.
    [27] STAR Collaboration, “Measurements of the transverse-momentum-dependent cross sections of J/ψ production at mid-rapidity in proton + proton collisions at √sNN = 510 and 500 GeV with the STAR detector,”Physical Review D, vol. 100, p. 052009, 2019.
    [28] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini, GEANT 3: user’s guide Geant 3.10, Geant 3.11; rev. version. Geneva: CERN, 1987.
    [29] “The STAR Heavy Flavor Tune.” [Online]. Available: https://www.star.bnl.gov/protected/heavy/ullrich/pythia8/
    [30] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual,” The European Physical Journal C, vol. 72, no. 3, 2012.
    [31] ——, “The anti-kt jet clustering algorithm,” Journal of High Energy Physics, vol. 2008, no. 04, pp. 063–063, 2008.
    [32] T. Adye, “Unfolding algorithms and tests using RooUnfold.”
    [33] G. D’Agostini, “A multidimensional unfolding method based on Bayes’ theorem,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 362, no. 2, pp. 487–498, 1995.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE