簡易檢索 / 詳目顯示

研究生: 陳亮瑜
Chen, Liang-Yu
論文名稱: 在感知無線電中以相關特性為基礎之模仿主要使用者攻擊偵測
Correlation-Based Detection of Primary User Emulation Attacks in Cognitive Radios
指導教授: 卿文龍
Chin, Wen-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 43
中文關鍵詞: 感知無線電模仿主要使用者攻擊主要使用者都卜勒頻率最大概似估測概似比試驗
外文關鍵詞: cognitive radio, primary user emulation attack (PUEA), primary user (PU), Doppler frequency, maximum likelihood estimation, likelihood ratio test
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文所探討的議題為感知無線電(cognitive radio, CR)如何在高速移動、受到多路徑干擾影響的惡意環境中辨識出攻擊者的存在。隨著感知無線電的迅速法展,衍生出許多值得我們探討的安全問題,其中模仿主要使用者攻擊(primary user emulation attacks, PUEA)較廣受討論,而本篇提出利用接收訊號的相關特性對模仿主要使用者攻擊做辨識。
    在高速移動的無線通訊中,接收端收到不同移動速度之訊號傳送者的訊號,其接收訊號的相關特性具獨特性,我們利用此特性來做使用者之辨識。首先利用最大概似估測(maximum likelihood estimation, MLE)估測出接收訊號之相關值向量,並算出其平均值(mean)及共變異數矩陣(covariance),再使用概似比試驗(likelihood ratio test, LRT)和對數概似比試驗(log likelihood ratio test, LLRT)設計偵測器,進行模仿主要使用者攻擊之辨識。本篇論文所提出之演算法相較於「以通道階能量為基礎偵測模仿主要使用者攻擊」[1]有較良好的偵測效能,且不受多路徑的影響,並能在高速環境下做偵測。在最後小節裡,我們亦使用模擬之方式,結合本實驗室提出的頻譜偵測演算法[2]及本篇的使用者辨識演算法,觀察和討論其整體效能。

    The topic of this paper is to identify the attacker’s presence in cognitive radio (CR) in high speed mobile environments which affected by multipath interference. With the rapid development of cognitive radio, several security issues have raised. Among these issues, the primary user emulation attack (PUEA) is widely discussed. In this work, we propose a method by using the correlation characteristics of received signal to identify the PUEA.
    In high speed mobile wireless communication, the correlation characteristics of received signal that received from different speed of transmitters are unique. We use this feature to identify the PUEA. First, the maximum likelihood estimation (MLE) is used to estimate the correlation vector of the received signal and calculate its mean and covariance matrix. Then we use likelihood ratio test (LRT) and log likelihood ratio test (LLRT) to design a detector that used to identify the PUEA. The algorithm proposed in this paper has a better detection performance than the algorithm based on channel tap power and its detection performance isn’t affected by multipath.

    目錄 摘要 i 英文摘要 ii 誌謝 ix 目錄 x 圖目錄 xii 表目錄 xiv 符號說明 xv 第一章 導論 1 1.1 基本知識 1 1.1.1 無線頻譜使用狀況 1 1.1.2 感知無線電 2 1.1.3 模仿主要使用者攻擊 4 1.2文獻探討 5 1.3 研究動機 8 1.4論文架構 8 第二章 系統架構 9 2.1正交分頻多工 9 2.2通道模型 10 2.3訊號模型及接收訊號之相關值估測 12 2.4模擬與討論 15 第三章 模仿主要使用者攻擊之辨識方法 19 3.1主要使用者之訊號偵測 19 3.2以相關值為基礎的訊號辨識 20 第四章 模擬與討論 26 4.1以相關值為基礎的使用者辨識之模擬與討論 26 4.2頻譜感測結合使用者辨識 35 第五章 結論與未來展望 40 參考文獻 41

    [1] 曾俊霖(2011)。在感知無線電中以通道特徵為基礎偵測模仿主要使用者攻擊。國立成功大學工程科學系碩士論文。
    [2] 路明儒(2018)。雙選擇性多重路徑衰減通道下的訊號偵測。國立成功大學工程科學系碩士論文。
    [3] Federal Communications Commission, “Spectrum policy task force report.” ET Docket No.02-135, 2002.
    [4] 林高洲,“感知無線電之運用與發展”,中華民國電子零件認證委員會,” IECQ報導第五十二期,2008.
    [5] J. Mitola III, “Cognitive radio: An integrated agent architecture for software defined radio.” PhD thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, May 2000.
    [6] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE Journal on Selected Areas in Communications., vol. 23, pp. 201-220, Feb.2005.
    [7] W. Wang, “Denial of service attacks in cognitive radio networks,”2010 International Conference on Environmental Science and Information Application Technology(ESIAT) , vol. 2, pp. 530-533, Jul. 2010.
    [8] R. Chen, J. M. Park, J. H. Reed, “Defense against Primary User Emulation Attacks
    in Cognitive Radio Networks,” IEEE Journal on Selected Areas in Communications,
    vol. 26, no. 1, pp. 25-37, Jan. 2008.
    [9] L. Huang, L. Xie, H. Yu, W. Wang, Y. Yao, “Anti-PUE Attack Based on Joint Position Verification in Cognitive Radio Networks,” 2010 International Conference on Communications and Mobile Computing (CMC), vol.2, pp. 169-173, Apr. 2010.
    [10] C. Zhao, L. Xie, X. Jiang, L. Huang, Y. Yao, “A PHY-layer authentication approach for transmitter identification in cognitive radio networks,” 2010 International Conference on Communications and Mobile Computing (CMC) , vol.2, pp. 154-158, Apr. 2010.
    [11] Zhou Yuan; Dusit Niyato; Husheng Li; Ju Bin Song; Zhu Han, “Defeating Primary User Emulation Attacks Using Belief Propagation in Cognitive Radio Networks,” IEEE Journal on Selected Areas in Communications, vol.30, no.10, pp. 1850-1860, Oct. 2012.
    [12] Yongcheng Li; Changdong Han; Manxi Wang; Huifang Chen; Lei Xie, “A primary user emulation attack detection scheme in cognitive radio network with mobile secondary user,” 2016 2nd IEEE International Conference on Computer and Communications (ICCC) , pp. 1076-1081, Oct. 2016.
    [13] Yang Zheng; Yuebin Chen; Chuanxi Xing; Janpei Chen; Ting Zheng, “A scheme against primary user emulation attack based on improved energy detection,” 2016 IEEE International Conference on Information and Automation (ICIA) ,pp. 2056-2060, Aug. 2016
    [14] Wassim Fassi Fihri; Youness Arjoune; Hassan El Ghazi; Naima Kaabouch; Badr Abou El Majd, “A particle swarm optimization based algorithm for primary user emulation attack detection,” 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC) , pp. 823-827, Jan. 2018
    [15] J. L. Burbank, “Security in cognitive radio networks: the required evolution in approaches to wireless network security,” 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 2008. (Crown COM 2008.), pp. 1-7, May 2008.

    [16] T. C. Clancy, N. Goergen, “Security in Cognitive Radio Networks: Threats and Miti-
    gation,” 3rd International Conference on Cognitive Radio Oriented Wireless Net-
    works and Communications, 2008. (Crown COM 2008.), pp. 1-8, May 2008.
    [17] T. W. Anderson, “Introduction to Multivariate Statistical Analysis,” New York: John Wiley and Sons, 1958.
    [18] K. Challapali, S. Mangold, and Z. Zhong, “Spectrum agile radio: Detecting spectrum opportunities,” in Proceedings of the Sixth Annual International Symposium on Advanced Radio Technologies, Mar. 2004.
    [19] M. P. Olivieri, G. Barnett, A. Lackpour, A. Davis, P. Ngo, “A scalable dynamic spe-
    ctrum allocation system with interference mitigation for teams of spectrally agile software defined radios,” 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005.(DySPAN 2005.), pp. 170-179, Nov. 2005.
    [20] Z. Chen, T. Cooklev, C. Chen, P. R. Carlos, “Modeling primary user emulation attacks and defenses in cognitive radio networks,” Performance Computing and Communications Conference (IPCCC), 2009 IEEE 28th International, pp. 208-215, Dec. 2009.

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE