簡易檢索 / 詳目顯示

研究生: 陳貴文
Chen, Guei-Wen
論文名稱: 利用分子動力學分析氮化鎵奈米結構之力學性質
Study on mechanical properties of gallium nitride (GaN) nanostructure by using Molecular Dynamics
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 97
中文關鍵詞: 氮化鎵薄膜及奈米線分子動力學奈米壓痕奈米彎曲
外文關鍵詞: GaN film and nanowire, Molecular Dynamics, nanoindentation, nanobending
相關次數: 點閱:143下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 分子動力學近年來被視為探討奈米尺度下機械性質有效的方法之ㄧ,其主要依循牛頓運動方程式,透過預測、修正等數值運算來得到各個時間步階下原子的位置、速度和加速度…等物理量。氮化鎵(GaN)被認為是第三代極具發展潛力的半導體材料之ㄧ,其薄膜基板在製作白、藍光發光二極體上扮演著關鍵性的角色,而氮化鎵奈米線可作為生物DNA的感測器…等,由此可見此材料在半導體領域上應用的重要性,故掌握其基本的力學性質將有助於應用及技術方面的突破。
    本文主要利用分子動力學透過奈米壓痕及奈米彎曲的方法,探討氮化鎵二維薄膜及一維奈米線結構之機械性質,分析不同模擬參數的條件下,材料本身力學性質的變化。模擬結果發現,在不同溫度下不同維度之氮化鎵材料之楊氏係數、硬度均隨著溫度的上升而下降,且薄膜與奈米線之間在力學數值結果上存在著差異性,並且發現(100)方向奈米線之楊氏係數及硬度會高於(110)方向。針對(100)方向之氮化鎵奈米線進行奈米彎曲測試,結果顯示不同的壓入深度可以明顯的區別出奈米線的彈塑性行為,而在高溫狀態下奈米線受彎曲作用後,其斷裂面呈現較佳的延性,其降伏強度與剛性則隨著溫度的升高而下降。

    Molecular Dynamics is one of methodology to study the mechanical properties of nanostructure. Molecular Dynamics simulation consists of the predicted and modified steps and obeys the classical Newton’s equation of motion. GaN was regard as one of the most potential semiconductor material of third generation. The GaN films play an important role in white or blue LED fabrication, and GaN nanowires are widely used in the fields of biomedical sensor devices. Investigating of their mechanical properties is the key to improve techniques and applications in the future.
    This paper investigates the mechanical properties of GaN films and nanowires under nanoindentaion and nanobending by using Molecular Dynamics (MD) in different simulation parameters. The results show that the Young’s modulus and hardness of GaN films and nanowires decrease with the temperature increase. Besides, the GaN films are distinguished from nanowires in numerical results. The Young’s modulus and hardness of (100) oriented GaN nanowire is higher than (110). Furthermore, this paper also discuss the deformation process of (100) oriented GaN nanowire under nanobending test. The elastic-plastic deformation can be recognized clearly in different indentation depths. The ductility of (100) oriented GaN nanowires at higher temperature is better than lower temperature, and the yielding strength and stiffness decrease with temperature increase.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 X 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-3 研究動機與目的 7 1-4 本文架構 8 第二章 分子動力學基本原理 9 2-1 分子動力學基本假設 9 2-2 分子間作用力與勢能函數 10 2-2-1 分子間作用力 10 2-2-2 勢能函數 11 2-3 系統之初始速度 16 2-4 系統溫度修正 17 2-5 截斷半徑與鄰近表列法 18 2-6 週期邊界條件 22 2-7 最小映像法則 23 2-8 預測修正法 25 2-9 無因次化 29 2-10 原子級應力 30 第三章 模擬分析理論架構 31 3-1 初始物理模型 31 3-2 奈米壓痕理論分析 36 3-3 勢能函數之選擇 43 3-4 混合法則 45 3-5 監控平衡狀態 45 3-6 模擬流程 46 第四章 結果分析與討論 49 4-1 平衡狀態 49 4-2 薄膜奈米壓痕 50 4-2-1 壓痕機制探討 50 4-2-2 薄膜原子級應力分佈 53 4-2-3 溫度效應探討 55 4-2-4 壓痕器形式效應探討 60 4-3 奈米線奈米壓痕 63 4-3-1 奈米線壓痕機制探討 63 4-3-2 奈米線溫度效應探討 68 4-3-3 壓痕器尺寸效應探討 72 4-4 薄膜及奈米線與實驗值綜合比較 75 4-5 奈米線奈米彎曲 76 4-5-1 奈米彎曲機制 76 4-5-2 溫度效應變形與破壞機制 81 第五章 結論與未來展望 88 5-1 結論 88 5-2 未來展望與建議 90 參考文獻 91 自述 97

    [1] 李思毅、李佳穎、曾俊元, “奈米材料的製程及其潛在的應用”, 物 理雙月刊(廿六卷三期) , 2004年6月。
    [2] ITRS Taiwan Conference, International Technology Roadmap for Semiconductors, 2000, Hsinchu.
    [3] 丁志華、管正平、黃新言、戴寶通, “奈米壓痕量測系統簡介”, 國家奈米元件實驗室。
    [4] 陳金珮、甘古立、張瑛芝、林麗瓊、陳貴賢, “氮化鎵奈米線在DNA分子感測上的應用”, 中央研究院週報, 第1124期。
    [5] H. Hertz, “Uber Die Berührung Fester Elastischer Körper”, Journal für die reine und angewandte Mathematik, Vol. 55, No. 3, pp. 269-285, 1989.
    [6] N. Sneddon, “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile”, Int. J. Eng. Sci., Vol. 3, No. 1, pp. 47-57, 1965.
    [7] U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation and Fracture”, Science, Vol. 248, No. 4954, pp. 454-461, 1990.
    [8] W. C. Oliver and G. M. Pharr, ”An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, J. Mater. Res., Vol. 7, No. 6, pp. 1564-1583, 1992.
    [9] K. Komvopoulos and W. Yan, “Molecular Dynamics Simulation of Single and Repeated Indentation”, J. Appl. Phys., Vol. 82, pp. 4823-4830, 1997.
    [10] P. Puech, F. Demangeot, J. Frandon and C. Pinquier, “GaN Nanoindentation: a Micro-Raman Spectroscopy Study of Local Strain Fields”, J. Appl. Phys., Vol. 96, No. 5, pp. 2853-2856, 2004.
    [11] X. W. Zhou, D. A. Murdick, B. Gillespie and H. N. G. Wadley,“Atomic Assembly during GaN Film Growth︰Molecular Dynamics Simulations”, Physical Review B, Vol. 73, pp. 045337(1-11), 2006.
    [12] C. H. Tsai, S. R. Jian and J. Y. Juang, “Berkovich Nanoindentation and Deformation Mechanics in GaN Thin Films”, Appl. Surf. Sci., Vol. 254, pp. 1997-2002, 2008.
    [13] M. Fujikane, M. Leszczyński, S. Nagao, T. Nakayama, S. Yamanaka, K. Niihara and R. Nowak, “Elastic–Plastic Transition During Nanoindentation in Bulk GaN Crystal”, J. of Alloys and Compounds, Vol. 450, pp. 405–411, 2008.
    [14] M. A. Moram, M. J. Kappers, F. Massabuau, R. A. Oliver and C. J. Humphreys, “The Effects of Si Doping on Dislocation Movement and Tensile Stress in GaN Films”, J. Appl. Phys., Vol. 109, pp. 073509(1-7), 2011.
    [15] M. Esposto, A. Chini and S. Rajan, “Analytical Model for Power Switching GaN-Based HEMT Design”, IEEE TANSACTIONS ON ELECTRON DEVICES, Vol. 58, No. 5, pp.1456-1461, 2011.
    [16] Y. Huang, X. Duan, Y. Cui and C. M. Lieber, “Gallium Nitride Nanowire Nanodevices”, Nano Lett., Vol. 2, No. 2, pp. 101-104, 2002.
    [17] Z. Zhong, F. Qian, D. Wang and C. M. Lieber, “Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices”, Nano Lett., Vol. 3, No. 3, pp. 343-346, 2003.
    [18] G. Feng and W. D. Nix,”A Study of the Mechanical Properties of Nanowires Using Nanoindentation”, J. Appl. Phys., Vol. 99, pp. 074304(1-10), 2006.
    [19] W. H. Moon and C. H. Choi, “Molecular-dynamics Study of Inversion Domain Boundary in w-GaN”, Phys. Let. A, Vol. 352, pp. 538-542, 2006.
    [20] W. H. Moon, H. J. Kim and C. H. Choi, “Molecular Dynamics Simulation of Melting Behavior of GaN Nanowires”, Scripta Materialia, Vol. 56, pp. 345-348, 2007.
    [21] Z. Wang, X. Zu, L. Yang, F. Gao and W. J. Weber, “Molecular Dynamics Simulation on the Buckling Behavior of GaN Nanowires Under Uniaxial Compression”, Physica E , Vol. 40, pp. 561-566, 2008.
    [22] Y. D. Yan, J. J. Zhang, T. Sun, W. D. Fei, Y. C. Liang and S. Dong, “Nanobending of Nanowires︰A Molecular Dynamics Study”, Appl. Phys. Lett., Vol. 93, 241901(1-3), 2008.
    [23] P. Zhou, C. Wu and X. Li, “Three-point Bending Young’s Modulus of Nanowires”, Meas. Sci. Technol., Vol. 19, 2008.
    [24] X. W. Zhou, R. E. Jones and S. Aubry, “Molecular Dynamics Prediction of Thermal Conductivity of GaN Films and Wires at Realistic Length Scales”, Physical Review B, Vol. 81, pp. 155321(1-13).
    [25] D. E. Kim and S. I. Fang, D. S. Chuu and L. W. Ji, “Atomistic Simulation of Structure Phase Transformations in Monocrystalline Silicon Induced by Nanoindentation”, Nanotechnology, Vol. 17, No. 19, pp. 2259-2265, 2006.
    [26] J. E. Jones, “The Determination of Molecular Fields I. From the Variation of Viscosity of a Gas with Temperature”, Proc. R. Soc. London, Ser. A, Vol. 106, No. 738, pp. 441-462, 1924.
    [27] M. Matusi and M. Akaogi, “Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2”, Mol. Stimul., Vol. 6, pp. 239-244, 1991.
    [28] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metal”, Phys. Rev., Vol. 114, No. 3, pp. 687-690, 1959.
    [29] S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded –Atom Method Functions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt and Their Alloys”, Phys. Rev. B: Condens. Matter, Vol. 48, No. 1, pp. 22-33, 1993.
    [30] F. Cleri and V. Rosato, “Tight-Binding Potentials for Transition Metals and Alloys”, Phys. Rev. B: Condens. Matter, Vol. 48, No. 1, pp. 22-33, 1993.
    [31] J. Tersoff, “New Empirical Model for the Structure Properties of Silicon”, Phys. Rev. Lett., Vol. 56, pp. 632-635, 1986.
    [32] J. Tersoff, “Empirical Interatomic Potential for Silicon with Improved Elastic Properties”, Phys. Rev. B, Vol. 38, pp. 9902-9905, 1998.
    [33] J. Tersoff, “New Empirical Approach for the Structure and Energy of Covalent Systems”, Phys. Rev. B. Vol. 37, pp. 6991-7000, 1998.
    [34] J. Tersoff, “Modeling Solid-state Chemistry : Interatomic Potentials for Multicomponent Systems”, Phys. Rev. B, Vol. 39, pp. 5566-5568, 1989.
    [35] T. Iwaki, “Molecular Dynamic Study on Stress-Strain in Very Thin Film”, JSME Int. J. Ser. A, Vol. 39, No. 3, pp. 346-353, 1988.
    [36] K. Harafuji, T. Tsuchiya and K. Kawamura, “Molecular Dynamics Simulation of Dislocation in Wurtzite-type GaN Crystal”, J. Appl. Phys., Vol. 96, No. 5, pp. 2513-2524, 2004.
    [37] R. B. King, “Elastic Analysis of Some Punch Problems for a Layered Medium”, Int. J. Solids Structure, Vol. 23, pp. 1657-1667, 1987.
    [38] D. L. Joslin and W. C. Oliver, “A New Method for Analyzing Data from Continue Depth-Sensing Microindentation Tests”, J. Mater. Res., Vol. 5, pp. 123-126, 1990.
    [39] J. Adhikari, “Molecular Simulation Study of the Structural Properties in InxGa1-xAs Alloys:Comparison between Valence Force Field and Tersoff Potentials Models”, Comp. Mater. Sci., Vol. 43, pp. 616-622, 2008.
    [40] F. de Brito Mota, J. F. Justo and A. Fazzio, “Structural Properties of Amorphous Silicon Nitride”, Phys. Rev. B, Vol. 58, pp. 8323-8328, 1998.
    [41] V. A. Skripnikov, Y. P. Khukhryansky, V. A. Savchenko and A. V. Kartavykh, “The Influence of Local Order at a Crystal-Melt Interface on the AIIIBV Crystalgroth”, Journal of Crystal Growth, Vol. 310, pp. 3512-3516, 2008.
    [42] M. Rieth, “Nano-engineering in Science and Technology:an Introduction to the World of Nano-design”, World Science, Singapore, 2003.
    [43] K. Maekawa, A. Itoh, “Friction and Tool Wear in Nano-scale Machining – A Molecular Dynamics Approach”, Wear, Vol. 188, pp. 115-122, 1995.
    [44] M. Imafuku, Y. Sasajima, R. Yamamoto and M. Doyama, “Computer Simulations of the Structures of the Metallic Superlattices Au/Ni and Cu/Ni and Their Elastic Moduli”, J. Phys.F:Met. Phys., Vol. 16, pp. 823-829, 1986.
    [45] N. Miyazaki and Y. Shiozaki, “Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method”, JSME Int. J., Ser. A, Vol. 39, No. 4, pp. 606-612, 1996.
    [46] V. Dupont and F. Sansoz, “Molecular Dynamics Study of Crystal Plasticity during Nanoindentation in Ni Nanowires”, J. Master. Res., Vol. 24, No. 3, 2009.
    [47] Y. Chen, I. Stevenson, R. Pouy, L. Wang, D. N Mcllroy, T. Pounds, M G. Norton and D E. Aston, “Mechanical Elasticity of Vapour-liquid-solid Grown GaN Nanowires”, Nanotechnology, Vol. 18, 2007.
    [48] R. A. Bernal, R. Agrawal, B. Peng, K. A. Bertness, N. A. Sanford, A. V. Davydov and H. D. Espinosa, “Effect of Growth Orientation and Diameter on the Elasticity of GaN Nanowires. A Combined in Situ TEM and Atomistic Modeling Investigation”, Nano Lett., Vol. 11, pp. 548-555, 2011.
    [49] 林彥宏, “奈米壓痕表面層效應與結構變化探討”, 國立中正大學, 碩士論文, 2005.

    下載圖示 校內:2013-07-21公開
    校外:2013-07-21公開
    QR CODE