簡易檢索 / 詳目顯示

研究生: 黃昱翔
Huang, Yu-Hsiang
論文名稱: 具端點釘附之DNA分子於外加電場作用下的拉伸及鬆弛行為探討
Stretching and Elastic Relaxation of End-Tethered DNA Molecules in Electric Fields
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 137
中文關鍵詞: DNA端點釘附拉伸鬆弛交流極化具偏壓之交流電場
外文關鍵詞: end-tethered DNA, stretching, relaxation, AC polarization, AC bias
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文我們提出一個將單分子去氧核醣核酸(DNA)端點釘附於表面之新策略。此策略是透過先散佈外層修飾streptavidin並帶正電的量子點至一帶負電的玻璃基板上,並利用它們去鉤附端點有修飾biotin的DNA分子。此外,我們進一步研究在直流和交流電場的影響下,端點釘附之DNA的拉伸與彈性鬆弛行為。
    本論文第三章,我們演示如何實現釘附作用並尋求最佳實驗條件來促進單分子的研究,此實驗條件包括添加非離子型界面活性劑以消除電滲流、增加溶液黏度去延長鬆弛時間以及控制添加量子點的數量使得在DNA分子無相互糾纏的前提下獲得足夠的DNA分子釘附的量。
    本論文第四章,我們施加不同大小的DC電場拉伸端點釘附的DNA並以獲得拉伸力-長度特徵曲線。我們亦藉由不可延展和可延展的wormlike chain models迴歸實驗數據去測得DNA的persistence length(l_p)。我們出乎意料地發現l_p不超過10nm並且比一般文獻上常見的50nm短,這說明在我們的系統裡DNA分子較難拉伸,原因可能為DNA鏈滴(blobs)與表面界面活性劑交聯。這個交聯效應可以透過存在著兩個鬆弛時間的結果來支持,而我們觀察到第二鬆弛時間較長,且效應也隨拉伸程度的減少而更明顯。
    本論文第五章,我們檢視在高頻交流電場下DNA的鬆弛行為。在一交流電場頻率下,我們發現第一鬆弛時間會隨著交流電場增加而有先減後増的趨勢,且不論DNA拉伸長或短,其變化趨勢均類似。這個非單調變化可歸因於與長度相關的極化機制,此機制涉及於在長拉伸時的介電極化與短拉伸時的導電極化之間的相互競爭。
    本論文的最後部份,我們施加一具偏壓不為零的交流電場拉伸DNA。相較於第四章的結果,在平均電場強度方面,於低電場時拉伸會較長,而在高電場時會較短。針對低電場的情形,我們亦透過關閉偏壓,在一平均電場為零的交流電場下測量DNA(第一)鬆弛時間,並發現其確實比第四章結果來的長。這裡我們所量測的DNA拉伸及鬆弛時間行為意味著交流電場可能施加額外的拉伸力而使DNA更加延展。

    關鍵字:DNA端點釘附、拉伸、鬆弛、交流極化、具偏壓之交流電場

    In this thesis we propose a simple strategy for tethering single DNA molecules onto a surface. This is realized by first spreading streptavidin-coated, positively charged quantum dots on a negatively charged glass and then using them to anchor the biotin-attached end of a DNA molecule. In addition, we further study the stretching and elastic relaxation of end-tethered DNA under the influence of DC or/and AC electric fields.
    In Chapter 3, we show how to realize the tethering and seek optimal conditions for expediting single molecule studies, including the addition of non-ionic surfactants for eliminating electroosmotic flow, the increase in the solution viscosity for prolonging the relaxation time, and the control of the amount of added quantum dots for obtaining a sufficient amount of tethered DNA molecules without being entangled to each other.
    In Chapter 4, we stretch end-tethered DNA under varying strengths of DC electric fields to determine the characteristic force-extension curve. We also measure the persistence length l_p of DNA by fitting the data using both inextendable and extendable wormlike chain models. We find, surprisingly, that l_p is no more than 10nm and much shorter than 50nm commonly reported in literatures, suggesting that DNA molecules in our setup are hard to extend perhaps due to the entanglement of DNA blobs (but not the backbone of DNA) to the surface surfactants. This entanglement effect is supported by the existence of two relaxation times and the observation that the second one is longer especially when the extent of stretch is smaller.
    In Chapter 5, we examine the relaxation behavior of DNA under high frequency AC electric fields. At a given AC frequency, we observe that the first relaxation time first decreases and then increases as the field strength increases. This trend is found to be similar regardless of the extent of stretch. This non-monotonic change in the relaxation time could be attributed to the length-dependent polarization mechanism, involving the competition between dielectric polarization for large stretch and conductive polarization for small stretch.
    In the last part of this thesis, we apply an AC biased electric field having a non-zero mean to stretch DNA. Compared to the results under DC electric fields in Chapter 4, in terms of the averaged field strength, the chain extension can be greater at low fields, whereas it becomes shorter at high fields. For the low-field case, we also measure the (first) relaxation time of DNA in a zero-mean AC electric field by turning off the bias, and find that it is indeed longer than that in Chapter 4. Both stretching and relaxation results suggest that AC electric fields might impose additional stretching forces to make DNA more extendable.

    Keywords: end-tethered DNA, stretching, relaxation, AC polarization, AC bias

    摘要 i Abstract iii 誌謝 v 目錄 vi 表目錄 xi 圖目錄 xii 符號說明 xxiv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 文獻回顧 2 1.3.1 端點釘附表面之DNA的動態拉伸研究 3 1.3.2 DNA鬆弛行為之研究 4 第二章 基本原理 5 2.1 電雙層(Electric Double Layer, EDL) 5 2.2 電滲(Electro-osmosis, EO) 6 2.3 電泳(Electrophoresis, EP) 7 2.4 介電泳(Dielectrophoresis, DEP) 8 第三章 結合量子點及Streptavidin-Biotin Binding將DNA釘附於表面來實現單一分子鏈拉伸之新策略 12 3.1 研究背景 12 3.2 實驗 14 3.2.1 微流道裝置 14 3.2.2 實驗溶液 14 3.2.3 硬體架構 17 3.2.4 實驗步驟 18 3.2.5 實驗相關細節 20 3.2.6 影像處理軟體與拍攝 21 3.2.6.A 影像擷取參數設定 21 3.2.6.B 影像擷取時間設定 22 3.2.6.C 100倍油鏡之觀測方法 23 3.3 影響DNA釘附作用及觀察之因素 23 3.3.1 QD濃度的影響 23 3.3.2 界面活性劑濃度的影響 25 3.3.3 蔗糖溶液的影響 26 3.4 結論 28 第四章 以直流電場拉伸端點釘附表面之DNA及其鬆弛行為的探討 42 4.1 實驗 43 4.1.1 實驗溶液 43 4.1.2 實驗步驟 43 4.1.3 實驗相關細節 44 4.2 實驗觀測與紀錄 45 4.2.1 釘附於表面的DNA分子之拉伸長度測量 45 4.2.2 釘附於表面的DNA分子之鬆弛時間測量 45 4.3 實驗結果與討論 46 4.3.1 λDNA之拉伸力─長度特徵曲線 46 4.3.1.A 拉伸長度之測量結果 46 4.3.1.B 電泳遷移率的測量 49 4.3.1.C Persistence length的估算 50 4.3.1.D Extendable wormlike chain model 50 4.3.2 λDNA於不同拉伸長度的鬆弛行為之探討 51 4.4 結論 56 第五章 先以直流電場拉伸DNA再切換至交流電場下之鬆弛行為的探討 70 5.1 實驗 71 5.1.1 微流道裝置 71 5.1.2 硬體架構 71 5.1.3 實驗步驟 71 5.1.4 實驗相關細節 72 5.2 實驗觀測與紀錄 72 5.3 實驗結果與討論 73 5.3.1 DNA於完全拉伸下交流電場對鬆弛行為的探討 73 5.3.1.A 低交流電場下之測量結果 73 5.3.1.B 鬆弛時間變化之機制探討 74 5.3.1.C λDNA之DEP測試實驗 76 5.3.1.D 高交流電場下之測量結果 77 5.3.2 DNA於拉伸一半下交流電場對鬆弛行為的探討 78 5.3.3 統整不同DNA拉伸長度隨交流電場大小之鬆弛時間變化的機理探討 80 5.3.3.A 電偶極方向的影響 81 5.3.3.B 拉伸長度長時鬆弛時間隨交流電場變化之機理 82 5.3.3.C 拉伸長度短時鬆弛時間隨交流電場變化之機理 83 5.4 結論 83 第六章 具偏壓的交流電場拉伸端點釘附表面之DNA及其鬆弛行為的探討 99 6.1 實驗設計 99 6.2 實驗觀測與紀錄 100 6.2.1 以具偏壓之交流電場拉伸釘附表面的DNA之長度測量 100 6.2.2 以具偏壓之交流電場拉伸釘附表面的DNA之鬆弛時間測量 100 6.3 實驗結果與討論 101 6.3.1 具偏壓之交流電場對DNA拉伸長度的影響 101 6.3.1.A DNA之拉伸力─長度特徵曲線 101 6.3.1.B 不同偏壓與交流電場大小關係之探討 103 6.3.1.C 於相同偏壓下頻率的探討 104 6.3.2 具偏壓之交流電場對DNA鬆弛時間的影響 104 6.4 結論 105 第七章 結論及未來工作 115 7.1 結論 115 7.2 未來工作 117 參考文獻 119 附錄A 微流道製程 121 附錄B 釘附DNA於交流電場下其鬆弛時間變化機制之推導(blob theory) 131 附錄C 增幅器校正表 133 附錄D 界面活性劑影響之測試實驗 135 自述 137

    A. Balducci, C. C. Hsieh, P. S. Doyle, Relaxation of Stretched DNA in Slitlike Confinement, Physical Review Letters, 2007, 99, p. 238102.
    B. Ladoux, P. S. Doyle, Stretching Tethered DNA Chains in Shear Flow, Europhysics Letters, 2000, 52, pp. 511-517.
    B. Maier, U. Seifert, J. O. Ra ̈dler, Elastic Response of DNA to External Electric Fields in Two Dimensions, Europhysics Letters, 2002, 60, pp. 622-628.
    C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, S. M. Block, Stretching of Single Collapsed DNA Molecules, Biophysical Journal, 2000, 78, pp. 1965-1978.
    C. H. Chiou, G. B. Lee, A Micromachined DNA Manipulation Platform for the Stretching and Rotation of a Single DNA Molecule, Journal of Micromechanics and Microengineering, 2005, 15, pp. 109-117.
    C. Y. Zhang, H. C. Yeh, M. T. Kuroki, T. H. Wang, Single-Quantum-Dot-Based DNA Nanosensor, Nature Materials, 2005, 4, pp. 826-831.
    H. Morgan, N. G. Green, AC Electrokinetics: Colloids and Nanoparticles, Research Studies Press LTD., 2003.
    J. Wang, C. Lu, Single Molecule λ-DNA Stretching Studied by Microfluidics and Single Particle Tracking, Journal of Applied Physics, 2007, 102, p. 074703.
    O. B. Bakajin, T. A. J. Duke, C. F. Chou, S. S. Chan, R. H. Austin, E. C. Cox, Electrohydrodynamic Stretching of DNA in Confined Environments, Physical Review Letters, 1998, 80, pp. 2737-2740.
    P. S. Doyle, B. Ladoux, J. L. Viovy, Dynamics of a Tethered Polymer in Shear Flow, Physical Review Letters, 2000, 84, pp. 4769-4772.
    S. Ferree, H. W. Blanch, Electrokinetic Stretching of Tethered DNA, Biophysical Journal, 2003, 85, pp. 2539-2546.
    T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, Stretching of a Single Tethered Polymer in a Uniform Flow, Science, 1995, 268, pp. 83-87.
    王政源,以移動界面法實現分子疏並應用其發展具標的分子診斷功能之一維奈米感測器,國立成功大學,碩士論文,2010。
    林宣甫,於高頻交流電場下膠體粒子與DNA分子之動態組裝,國立成功大學,碩士論文,2009。
    鄭仁浩,DNA分子於外加電場及流場下之運動行為的探討,國立成功大學,碩士論文,2010。
    謝書府,藉次微米界面構造侷限效應操控單分子DNA之研究:以電荷動力方法實現長鏈DNA分子之熵致捕捉、分子梳、及動態組裝之新微流體平台,國立成功大學,碩士論文,2008。

    下載圖示 校內:2021-05-19公開
    校外:2021-05-19公開
    QR CODE