簡易檢索 / 詳目顯示

研究生: 江佩錞
Jiang, Pei-Chuen
論文名稱: 氮化鎢薄膜閘極電極之物性與電性研究
Investigation on the Physical and Electrical Characteristics of WNx films as Gate Electrode
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 142
中文關鍵詞: 功函數閘極電極氮化鎢
外文關鍵詞: work function, gate electrode, WNx
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著互補式金屬-氧化物-半導體場效電晶體(complementary metal-oxide- semiconductor,簡稱CMOS)元件的閘極寬度收縮至65 nm以下,為了增進元件的特性及降低短通道效應,傳統的二氧化矽閘極氧化層的厚度必須降低至20 以下。然而過薄的二氧化矽將會由於電子電洞穿隧電流的增加,而引發高的漏電流,因而增加能量的消耗以及影響電路的運作。此外,傳統的P型多晶矽閘極電極也隨著尺寸的降低而面臨空乏效應以及硼穿透的現象,因而降低了整體電容值以及氧化層的可靠度。為了克服超薄氧化層及多晶矽閘極帶來的問題,必須使用高介電常數材料及新的閘極材料來延續縮小元件尺寸的趨勢。
    為了克服傳統的多晶矽閘極電極帶來的問題,金屬氮化物成為取代多晶矽閘極電極材料的新選擇。然而以金屬氮化物作為閘極電極,閘極中氮的含量以及結晶結構卻沒有詳細的研究資料。因此,本研究第一階段以不同氮含量的氮化鎢作為閘極電極,而以二氧化矽(SiO2)作為閘極氧化層,研究氮含量對於氮化鎢作為閘極電極的影響。
    藉由反應性磁控濺鍍,可以得到WN0.6、WN0.8和WN1.5三種不同含氮量的氮化鎢閘極電極,且其功函數分別為4.50、5.01和4.49 eV。經過500 oC的混合氣體(H2+N2)退火後,WN0.6閘極表面的化學鍵結僅存W-O鍵,而無W-N鍵;此外,氧由SiO2層擴散進入WN0.6閘極,因而在WN0.6閘極與SiO2層之間形成一層混合層,此結果造成電容器的平帶電壓往正偏壓方向偏移。對於高氮含量的WN0.8和WN1.5閘極電極而言,退火後均有良好的表面抗氧化性以及閘極與介電層沒有明顯的反應發生。然而,在電容器的漏電行為表現上,閘極材料中氮含量的多寡對於介電層的漏電並沒有明顯的影響。
    經由第一階段實驗得知WN0.8薄膜具備了良好的閘極電極熱穩定性與低電阻值,因此本研究第二階段使用WN0.8與結晶的五氧化二鉭(Ta2O5),分別作為閘極電極與高介電常數閘極氧化層材料。藉由利用不同退火氣氛(H2與H2+N2)及退火溫度(400-600 oC),觀察WN0.8閘極的熱穩定性質以及其與Ta2O5氧化層界面的變化。結果顯示不論在何種退火氣氛下,WN0.8閘極的表面在經過600 oC退火後均會產生氧化的現象,主因為WN0.8薄膜中的氮原子發生向外逸散的現象。若採用H2+N2退火氣氛則可有效降低WN0.8薄膜中氮原子逸散的程度。此外,WN0.8閘極與Ta2O5氧化層在600 oC退火處理後仍能維持良好的界面穩定性。在電性行為表現上,退火溫度的提升可以降低氧化層與基材界面的捕獲電荷數與降低氧化層漏電流之值。
    為了更進一步降低閘極的電阻率,本研究的第三階段採用W(50 nm)/WN0.8(5-15 nm)疊層閘極電極結構,藉由改變WN0.8的厚度觀察電容器的特性。研究結果顯示,過薄的WN0.8(≤ 10 nm)電極會因為結晶性的降低因而導致功函數值的下降。經過混合氣體(H2+N2)的熱處理後,W/WN0.8(15 nm)與單層WN0.8電極之功函數值均有降低的現象產生,然而W/WN0.8(≤ 10 nm)電極的功函數值則呈現增加的趨勢。此外,WN0.8的厚度變化並不會影響氧化層的缺陷數量,且經過熱處理後可有效降低氧化層的缺陷數目。

    With the continuous down-scaling of complementary metal oxide semiconductor (CMOS) device dimensions to the 65 nm regime, the vertical dimension of SiO2 is also being scaled down to less than 20 in order to obtain the high device performance and to suppress short channel effects. In the regime of SiO2 thickness, however, the large gate leakage current due to electron and hole tunneling will increase static power consumption and affect circuit operation. The conventional p+ poly-silicon gate also suffers poly-depletion and boron penetration effects with decreasing dimensions, and those effects will decrease the capacitance and oxide layer reliability. Therefore, high dielectric constant (high-k) materials with thicker physical thickness and new gate electrode materials must replace SiO2 and poly-silicon, respectively, to overcome the obstacles associated with the small device dimension.
    Metal nitrides are potential materials for gate electrode application. Nevertheless, nitrogen concentration and structure of metal nitride gate electrodes are not fully explored in previous studies. In the first part of this study, WNx and SiO2 are chosen as the gate electrode and gate dielectric, respectively, to investigate the effect of nitrogen content on the properties of WNx gate electrode.
    Thin films of various nitrogen compositions, WN0.6, WN0.8 and WN1.5, are obtained by reactive sputtering. The work function of WN0.6, WN0.8 and WN1.5 are 4.50, 5.01 and 4.49 eV, respectively. After annealing at 500oC in H2+N2 ambient, the surface of the WN0.6 film reveals only the W-O bonding, but no W-N bonding. In addition, oxygen diffused from SiO2 into WN0.6 and leads to the formation of a mixing layer. Subsequently, flatband voltage of the WN0.6-gated MOS capacitor shifts positively after annealing at 500oC. After annealing at 500oC, WN0.8 and WN1.5 films exhibit better resistance to oxidation than the WN0.6 film, regardless of the surface of the WNx film or the interface between WNx and SiO2. However, neither the nitrogen content in the WNx nor the post-metal annealing affects the leakage current of WNx/SiO2/Si capacitors at both positive and negative biases.
    Thermal stability and electrical properties of WN0.8/Ta2O5/Si MOS capacitors upon post-metal annealing in H2 or H2+N2 ambient are investigated. The crystal structure of WN0.8 is W2N phase, and W2N partly transforms to WO3 after annealing at 600oC both in H2 and H2+N2 atmospheres because of the effusion of nitrogen atoms. However, the H2+N2 ambient will significantly reduce the degree of oxidation because the nitrogen in the annealing ambient will prevent the loss of nitrogen from the W2N layer. After annealing, the density of trapped charges decreased with increasing the annealing temperature. From the I-V curves, the leakage current decreases with increasing the annealing temperature at positive bias.
    The resistivity of gate electrode can be reduced by employing W/WN0.8 stacking structure. The work function of the W/WN0.8(≤ 10nm) stack (~ 4.6 eV) is smaller than that of W/WN0.8(15nm) stack (~ 5.0 eV). It is attributed to the low crystallinity of thinner WN0.8 layer. After annealing in H2+N2 ambient, the work function of W/WN0.8(15nm) stack and W2N single layer decrease. But for the W/WN0.8(≤ 10nm) stack, the work function increases after annealing. In addition, the oxide charges decrease significantly after annealing and the amount of oxide charges is independent of the W2N thickness.

    第1章 前言與研究目的 -------------------------------------------------------------------- 1 1-1 前言 --------------------------------------------------------------------------------- 1 1-2 研究目的 --------------------------------------------------------------------------- 5 第2章 理論基礎 ---------------------------------------------------------------------------- 7 2-1 閘極電極材料 --------------------------------------------------------------------- 8 2-1.1 純金屬閘極電極 ------------------------------------------------------------- 8 2-1.2 金屬合金閘極電極 -------------------------------------------------------- 13 2-1.3 金屬氮化物閘極電極 ----------------------------------------------------- 17 2-1.4 金屬氧化物閘極電極 ----------------------------------------------------- 21 2-2 Fermi level pinning phenomenon & Metal induced gap state (MIGS) --- 22 2-3 氮化鎢(WNx)閘極電極研究概況 --------------------------------------------- 25 第3章 實驗方法與步驟 ------------------------------------------------------------------ 28 3-1 實驗材料與薄膜製備參數及其系統 ----------------------------------------- 28 3-1.1 矽基材(Silicon substrate) ------------------------------------------------- 28 3-1.2 清洗矽基材相關化學藥品 ----------------------------------------------- 29 3-1.3 高溫氧化爐製備二氧化矽(SiO2) ---------------------------------------- 32 3-1.4 化學氣相沈積(Chemical Vapor Deposition, CVD)系統製備五氧化二鉭(Ta2O5) ----------------------------------------------------------------------- 34 3-1.5 物理氣相沈積(Physical vapor deposition, PVD)系統製備氮化鎢(WNx) ------------------------------------------------------------------------------------ 36 3-1.6 熱處理設備及其使用氣氛 ----------------------------------------------- 38 3-2 實驗流程 -------------------------------------------------------------------------- 40 3-3 分析儀器 -------------------------------------------------------------------------- 43 3-3.1 表面粗度儀(Stylus profilometry) ---------------------------------------- 43 3-3.2 橢圓偏光儀(Ellipsometry) ------------------------------------------------ 44 3-3.3 拉塞福背向散射分析儀(Rutherford backscattering spectrometry, RBS) ------------------------------------------------------------------------------------ 45 3-3.4 低掠角入射X光繞射儀(Glancing incident angle X-ray diffraction, GIAXRD) -------------------------------------------------------------------- 46 3-3.5 掃瞄式電子顯微鏡(Scanning electron microscopy, SEM) --------- 47 3-3.6 穿透式電子顯微鏡(Transmission electron microscopy, TEM) ---- 48 3-3.7 歐傑電子能譜儀(Auger electron spectroscopy, AES) --------------- 49 3-3.8 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) ------ 50 3-3.9 四點探針(Four point probe) --------------------------------------------- 51 3-3.10 電容-電壓(Capacitance-Voltage, C-V)量測 ------------------------- 52 3-3.11 電流密度-電壓(Current density-Voltage, J-V)量測 ---------------- 53 第4章 結果與討論 ------------------------------------------------------------------------ 54 4-1 WNx薄膜性質 ------------------------------------------------------------------- 55 4-1.1 WNx薄膜成分分析及結晶結構分析 ---------------------------------- 56 4-1.2 WNx閘極電極功函數 ----------------------------------------------------- 64 4-2 WNx/SiO2/Si電容器熱穩定性與電性行為 --------------------------------- 68 4-2.1 WNx閘極電極退火後結晶結構變化 ---------------------------------- 69 4-2.2 WNx閘極電極退火後表面型態差異 ----------------------------------- 72 4-2.3 WNx/SiO2/Si結構退火後縱深元素分佈變化 ------------------------ 76 4-2.4 WNx/SiO2/Si結構退火後鍵結型態分析 ------------------------------ 82 4-2.5 WNx/SiO2/Si結構退火後厚度及電阻率變化 ------------------------- 88 4-2.6 WNx/SiO2/Si電容器退火後C-V曲線變化 --------------------------- 90 4-2.7 WNx/SiO2/Si電容器退火後漏電流變化 ------------------------------ 95 4-3 退火氣氛對於WN0.8/Ta2O5/Si電容器熱穩定性與電性行為之影響 - 100 4-3.1 退火氣氛對WN0.8閘極電極結晶結構影響 -------------------------- 101 4-3.2 退火氣氛對WN0.8/Ta2O5/Si結構縱深元素分佈影響 -------------- 103 4-3.3 退火氣氛對WN0.8/Ta2O5/Si結構電阻率影響 ----------------------- 106 4-3.4 退火氣氛對WN0.8/Ta2O5/Si電容器C-V曲線影響 ----------------- 108 4-3.5 退火氣氛對WN0.8/Ta2O5/Si電容器漏電流影響 -------------------- 113 4-4 WN0.8厚度對於W/WN0.8疊層閘極電極結構之影響 ------------------- 115 4-4.1 W/WN0.8疊層閘極電極結構結晶結構 ------------------------------- 116 4-4.2 W/WN0.8/SiO2/Si疊層閘極電極結構退火後縱深元素分佈變化 -- 119 4-4.3 W/WN0.8疊層閘極電極結構退火前後功函數變化 ---------------- 123 4-4.4 W/WN0.8/SiO2/Si電容器退火後氧化層缺陷變化 ------------------ 126 第5章 總結 -------------------------------------------------------------------------------- 129 參考文獻 ------------------------------------------------------------------------------------- 130

    1. T. Makino and H. Nakamura, The influence of plasma annealing on electrical properties of polycrystalline Si, Appl. Phys. Lett. 35, 551 (1979).
    2. T. Shibata, K. F. Lee, J. F. Gibbons, T. J. Magee, J. Peng, and J. D. Hong, Resistivity reduction in heavily doped polycrystalline silicon using cw-laser and pulsed-laser annealing, J. Appl. Phys. 52, 3625 (1981).
    3. J. Murota and T. Sawai, Electrical characteristics of heavily arsenic and phosphorus doped polycrystalline silicon, J. Appl. Phys. 53, 3702 (1982).
    4. J. J. Yang, W. I. Simpson, H. M. Manasevit, and R. P. Ruth, Grain-size effects on electrical properties of n-type polycrystalline chemical vapor deposition Si films, J. Appl. Phys. 55, 2995 (1984).
    5. T. W. Hickmott and R. D. Isaac, Barrier heights at the polycrystalline silicon-SiO2 interface, J. Appl. Phys. 52, 3464 (1981).
    6. N. Lifshitz, Dependence of the work-function difference between the polysilicon gate and silicon substrate on the doping level in polysilicon, IEEE Trans. on Electron Devices 32, 617 (1985).
    7. H. Okabayashi, E. Nagasawa, and M. Morimoto, Low resistance MOS technology using self-aligned refractory-silicidation, Tech. Dig. – Int. Electron Devices Meet. 1982, 556.
    8. C. K. Lau, Y. C. See, D. B. Scott, J. M. Bridges, S. M. Perna, and R. D. Davies, Titanium disilicide self-aligned source/drain gate technology, Tech. Dig. – Int. Electron Devices Meet. 1982, 714.
    9. T. P. Chow and A. J. Steckl, Refractory metal silicides: thin-film properties and processing technology, IEEE Trans. on Electron Devices 30, 1480 (1983).
    10. A. I. Chou, K. Lai, K. Kumar, J. C. Lee, M. Gardner, and J. Fulford, Optimization of gate dopant concentration and microstructure for improved electrical and reliability characteristics of ultrathin oxides and N2O oxynitrides, Appl. Phys. Lett. 69, 934 (1996).
    11. T. S. Chao, M. C. Liaw, C. H. Chu, C. Y. Chang, C. H. Chien, C. P. Hao, and T. F. Lei, Mechanism of nitrogen coimplant for suppressing boron penetration in p+-polycrystalline silicon gate of p metal-oxide semiconductor field effect transistor, Appl. Phys. Lett. 69, 1781 (1996).
    12. K. S. Krisch, M. L. Green, F. H. Baumann, D. Brasen, L. C. Feldman, and L. Manchanda, Thickness dependence of boron penetration through O2- and N2O-grown gate oxides and its impact on threshold voltage variation, IEEE Trans. on Electron Devices 43, 982 (1996).
    13. B. Yu, D.-H. Ju, W.-C. Lee, N. Kepler, T.-J. King, and C. Hu, Gate engineering for deep-submicron CMOS transistors, IEEE Trans. on Electron Devices 45, 1253 (1998).
    14. Y. F. Chong, H.-J. Gossmann, M. O. Thompson, K. L. Pey, A. T. S. Wee, S. Talwar, and L. Chan, Reduction of carrier depletion in p+ poltsilicon gates using laser thermal processing, IEEE Electron Device Lett. 24, 360 (2003).
    15. The International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, 2005), Front End Processes Section, p. 22.
    16. The International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, 2001), Front End Processes Section, p. 26.
    17. M. Hasan, H. Park, H. Yang, H. Hwang, H.-S. Jung, and J.-H. Lee, Ultralow work function of scandium metal gate with tantalum nitride interface layer for n-channel metal oxide semiconductor application, Appl. Phys. Lett. 90, 103510 (2007).
    18. K. Shiraishi, K. Yamada, K. Torii, Y. Akasaka, K. Nakajima, M. Konno, T. Chikyow, H. Kitajima, T. Arikado, and Y. Nara, Oxygen-vacancy-induced threshold voltage shifts in Hf-related high-k gate stacks, Thin Solid Films 508, 305 (2006).
    19. H. Yang, H. Park, D. Lee, S. Choi, and H. Hwang, Electrical characteristics of metal–oxide–semiconductor device with Sc gate on atomic-layer-deposited HfO2, Jpn. J. Appl. Phys., Part 2 44, L1275 (2005).
    20. I. Polishchuk, P. Ranade, T.-J. King, and C. Hu, Dual work function metal gate CMOS technology using metal interdiffusion, IEEE Electron Device Lett. 22, 444 (2001).
    21. M. Wittmer, J. R. Noser, and H. Melchior, Characteristics of TiN gate metal-oxide-semiconductor field effect transistors, J. Appl. Phys. 54, 1423 (1983).
    22. H. Yang, Y. Son, S. Baek, H. Hwang, H. Lim, and H.-S. Jung, Ti gate compatible with atomic-layer-deposited HfO2 for n-type metal-oxide-semiconductor devices, Appl. Phys. Lett. 86, 092107 (2005).
    23. V. Misra, G. P. Heuss, and H. Zhong, Use of metal–oxide–semiconductor capacitors to detect interactions of Hf and Zr gate electrodes with SiO2 and ZrO2, Appl. Phys. Lett. 78, 4166 (2001).
    24. J. Pan, C. Woo, C.-Y. Yang, U. Bhandary, S. Guggilla, N. Krishna, H. Chung, A. Hui, B. Yu, Q. Xiang, and M.-R. Lin, Replacement metal-gate NMOSFETs with ALD TaN/EP-Cu, PVD Ta, and PVD TaN electrode, IEEE Electron Device Lett. 24, 304 (2003).
    25. D. J. Lichtenwalner, J. S. Jur, R. Jha, N. Inoue, B. Chen, V. Misra, and A. I. Kingon, High-temperature stability of lanthanum silicate gate dielectric MIS devices with Ta and TaN electrodes, J. Electrochem. Soc. 153, F210 (2006).
    26. K. Saito, Y. Jin, and M. Shimada, Reduction of effective dielectric constant of gate insulator by low-resistivity electrodes, Appl. Phys. Lett. 81, 3582 (2002).
    27. Q. Lu, R. Lin, P. Ranade, Y. C. Yeo, X. Meng, H. Takeuchi, T.-J. King, C. Hu, H. Luan, S. Lee, W. Bai, C.-H. Lee, D.-L. Kwong, X. Guo, X. Wang, and T.-P. Ma, Molybdenum metal gate MOS technology for post-SiO2 gate dielectrics, Tech. Dig. – Int. Electron Devices Meet. 2000, 641.
    28. T. Amazawa and H. Oikawa, Surface state generation of Mo gate metal oxide semiconductor devices caused by Mo penetration into gate oxide, J. Electrochem. Soc. 145, 1297 (1998).
    29. C. Cabral, Jr., C. Lavoie, A. S. Ozcan, R. S. Amos, V. Narayanan, E. P. Gusev, J. L. Jordan-Sweet, and J. M. E. Harper, Evaluation of thermal stability for CMOS gate metal materials, J. Electrochem. Soc. 151, F283 (2004).
    30. J.-Y. Tewg, Y. Kuo, and J. Lu, Zirconium-doped tantalum oxide gate dielectric films integrated with molybdenum, molybdenum nitride, and tungsten nitride gate electrodes, J. Electrochem. Soc. 152, G643 (2005).
    31. D. A. Buchanan, F. R. McFeely, and J. J. Yurkas, Fabrication of midgap metal gates compatible with ultrathin dielectrics, Appl. Phys. Lett. 73, 1677 (1998).
    32. J. W. Lee, C. H. Han, J.-S. Park, and J. W. Park, Electrical characteristics and thermal stability of W, WNx, and TiN barriers in metal/Ta2O5/Si gate devices, J. Electrochem. Soc. 148, G95 (2001).
    33. E. J. Preisler, S. Guha, M. Copel, N. A. Bojarczuk, M. C. Reuter, and E. Gusev, Interfacial oxide formation from intrinsic oxygen in W–HfO2 gated silicon field-effect transistors, Appl. Phys. Lett. 85, 6230 (2004).
    34. J. Pan, D. Canaperi, R. Jammy, M. Steen, J. Pellerin, and M.-R. Lin, CVD rhenium and PVD tantalum gate MOSFETs fabricated with a replacement technique, IEEE Electron Device Lett. 25, 775 (2004).
    35. D. Gu, S. K. Dey, and P. Majhi, Effective work function of Pt, Pd, and Re on atomic layer deposited HfO2, Appl. Phys. Lett. 89, 082907 (2006).
    36. Y. Liang, J. Curless, C. J. Tracy, D. C. Gilmer, J. K. Schaeffer, D. H. Triyoso, and P. J. Tobin, Interface dipole and effective work function of Re in Re/HfO2/SiOx/n-Si gate stack, Appl. Phys. Lett. 88, 072907 (2006).
    37. K. J. Park, J. M. Doub, T. Gougousi, and G. N. Parsons, Microcontact patterning of ruthenium gate electrodes by selective area atomic layer deposition, Appl. Phys. Lett. 86, 051903 (2005).
    38. S. K. Dey, J. Goswami, D. Gu, H. d. Waard, S. Marcus, and C. Werkhoven, Ruthenium films by digital chemical vapor deposition: Selectivity, nanostructure, and work function, Appl. Phys. Lett. 84, 1606 (2004).
    39. K. Frhlich, R. Luptk, K. Husekov, K. Cico, M. Tapajna, U. Weber, P. K. Baumann, J. Lindner, and J. P. Espins, Properties of Ru/HfxSi1–xOy/Si metal oxide semiconductor gate stack structures grown by atomic vapor deposition, J. Electrochem. Soc. 153, F176 (2006).
    40. L. Pantisano, T. Schram, Z. Li, J. G. Lisoni, G. Pourtois, S. D. Gendt, D. P. Brunco, A. Akheyar, V. V. Afanas’ev, S. Shamuilia, and A. Stesmans, Ruthenium gate electrodes on SiO2 and HfO2: Sensitivity to hydrogen, Appl. Phys. Lett. 88, 243514 (2006).
    41. H.-C. Wen, P. Lysaght, H. N. Alshareef, C. Huffman, H. R. Harris, K. Choi, Y. Senzaki, H. Luan, P. Majhi, B. H. Lee, M. J. Campin, B. Foran, G. D. Lian, and D.-L. Kwong, Thermal response of Ru electrodes in contact with SiO2 and Hf-based high-k gate dielectrics, J. Appl. Phys. 98, 043520 (2005).
    42. J. K. Schaeffer, S. B. Samavedam, D. C. Gilmer, V. Dhandapani, P. J. Tobin, J. Mogab, B.-Y. Nguyen, B. E. White, Jr., S. Dakshina-Murthy, R. S. Rai, Z.-X. Jiang, R. Martin, M. V. Raymond, M. Zavala, L. B. La, J. A. Smith, R. Garcia, D. Roan, M. Kottke, and R. B. Gregory, Physical and electrical properties of metal gate electrodes on HfO2 gate dielectrics, J. Vac. Sci. Technol. B 21, 11 (2003).
    43. Q. Li, Y. F. Dong, S. J. Wang, J. W. Chai, A. C. H. Huan, Y. P. Feng, and C. K. Ong, Evolution of Schottky barrier heights at Ni/HfO2 interfaces, Appl. Phys. Lett. 88, 222102 (2006).
    44. V. V. Afanasev, M. Houssa, A. Stesmans, and M. M. Heyns, Band alignments in metal–oxide–silicon structures with atomic-layer deposited Al2O3 and ZrO2, J. Appl. Phys. 91, 3079 (2002).
    45. Y.-C. Yeo, P. Ranade, T.-J. King, and C. Hu, Effects of high-k gate dielectric materials on metal and silicon gate workfunctions, IEEE Electron Device Lett. 23, 342 (2002).
    46. L. Kang, B. H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric, IEEE Electron Device Lett. 21, 181 (2000).
    47. W.-J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, and J. C. Lee, Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application, Appl. Phys. Lett. 77, 3269 (2000).
    48. E. Atanassova, A. Paskaleva, N. Novkovski, and M. Georgieva, Conduction mechanisms and reliability of thermal Ta2O5–Si structures and the effect of the gate electrode, J. Appl. Phys. 97, 094104 (2005).
    49. S. Zafar, C. Cabral, Jr., R. Amos, and A. Callegari, A method for measuring barrier heights, metal work functions and fixed charge densities in metal/SiO2/Si capacitors, Appl. Phys. Lett. 80, 4858 (2002).
    50. S.-W. Nam, J.-H. Yoo, S. Nam, D.-H. Ko, C.-W. Yang, and J.-H. Ku, Characteristics of ZrO2 films with Al and Pt gate electrodes, J. Electrochem. Soc. 150, G849 (2003).
    51. T.-M. Pan, C.-L. Chen, W.-W. Yeh, and W.-J. Lai, Physical and electrical properties of lanthanum oxide dielectrics with Al and Al/TaN metal gates, Electrochem. Solid-State Lett. 10, H101 (2007).
    52. C. S. Park, B. J. Cho, and D.-L. Kwong, Thermally stable fully silicided Hf-silicide metal-gate electrode, IEEE Electron Device Lett. 25, 372 (2004).
    53. H. Luan, H. N. Alshareef, P. S. Lysaght, H. R. Harris, H. C. Wen, K. Choi, Y. Senzaki, P. Majhi, and B.-H. Lee, Evaluation of tantalum silicon alloy systems as gate electrodes, Appl. Phys. Lett. 87, 212110 (2005).
    54. T.-L. Li, W.-L. Ho, H.-B. Chen, H. C.-H. Wang, C.-Y. Chang, and C. Hu, Novel dual-metal gate technology using Mo-MoSix combination, IEEE Trans. on Electron Devices 53, 1420 (2006).
    55. K. Nakajima, H. Nakazawa, K. Sekine, K. Matsuo, T. Saito, T. Katata, K. Suguro, and Y. Tsunashima, Highly reliable CVD-WSi metal gate electrode for nMOSFETs, IEEE Trans. on Electron Devices 52, 2215 (2005).
    56. K. Roh, S. Youn, S. Yang, and Y. Roh, Tungsten silicide for the alternate gate metal in metal-oxide-semiconductor devices, J. Vac. Sci. Technol. A 19, 1562 (2001).
    57. H. C. Wen, J. Liu, J. H. Sim, J. P. Lu, and D. L. Kwong, Investigation of dopant effects in CoSi2 and NiSi fully silicided metal gates, Electrochem. Solid-State Lett. 8, G119 (2005).
    58. M. Qin, V. M. C. Poon, and S. C. H. Ho, Investigation of polycrystalline nickel silicide films as a gate material, J. Electrochem. Soc. 148, G271 (2001).
    59. J. Liu and D. L. Kwong, Improving work function tuning by preimplanting multiple dopants in Ni fully silicided gate, Appl. Phys. Lett. 88, 082105 (2006).
    60. J. Liu and D. L. Kwong, Investigation of work function adjustments by electric dipole formation at the gate/oxide interface in preimplanted NiSi fully silicided metal gates, Appl. Phys. Lett. 88, 192111 (2006).
    61. N. Biswas, J. Gurganus, V. Misra, Y. Yang, and S. Stemmer, Evaluation of nickel and molybdenum silicides for dual gate complementary metal-oxide semiconductor application, Appl. Phys. Lett. 86, 022105 (2005).
    62. N. Biswas, J. Gurganus, and V. Misra, Work function tuning of nickel silicide by co-sputtering nickel and silicon, Appl. Phys. Lett. 87, 171908 (2005).
    63. C. Y. Kang, P. Lysaght, R. Choi, B. H. Lee, S. J. Rhee, C. H. Choi, M. S. Akbar, and J. C. Lee, Nickel-silicide phase effects on flatband voltage shift and equivalent oxide thickness decrease of hafnium silicon oxynitride metal-silicon-oxide capacitors, Appl. Phys. Lett. 86, 222906 (2005).
    64. P. Zhao, I. Trachtenberg, M. J. Kim, B. E. Gnade, and R. M. Wallace, Ni diffusion studies from fully-silicided NiSi into Si, Electrochem. Solid-State Lett. 9, G111 (2006).
    65. M. Miyao, I. Tsunoda, T. Sadoh, and A. Miyauchi, Ge fraction dependent improved thermal stability of in situ doped boron in polycrystalline Si1−xGex (0 0.5)…films on SiON, J. Appl. Phys. 97, 054909 (2005).
    66. S.-K. Kang, B. G. Min, J. J. Kim, D.-H. Ko, H. B. Kang, C. W. Yang, and T. H. Ahn, Effect of boron dose and post-thermal budget on electrical properties of MOS-capacitors with a W/WNx/poly-Si1–xGex gate stack, J. Electrochem. Soc. 151, G67 (2004).
    67. S.-K. Kang, J. J.n Kim, B. G. Min, D.-H. Ko, C. W. Yang, and K. Y. Lim, Physical and electrical properties of polycrystalline Si1–xGex deposited using single-wafer-type low pressure CVD, J. Electrochem. Soc. 151, G13 (2004).
    68. J. Liu and D. L. Kwong, Phase formation and work function tuning in fully silicided Co–Ni metal gates with variable Co:Ni ratios, Appl. Phys. Lett. 88, 052109 (2006).
    69. Y. Tsuchiya, A. Kinoshita, and J. Koga, Effect of germanium on solid-phase reaction and effective work function in fully Ni-germanosilicided gate, IEEE Trans. on Electron Devices 53, 3080 (2006).
    70. J. D. Chen, H. Y. Yu, M. F. Li, D.-L. Kwong, M. J. H. van Dal, J. A. Kittl, A. Lauwers, P. Absil, M. Jurczak, and S. Biesemans, Yb-doped Ni FUSI for the n-MOSFETs gate electrode application, IEEE Electron Device Lett. 27, 160 (2006).
    71. A. E.-J. Lim, R. T. P. Lee, C. H. Tung, S. Tripathy, D.-L. Kwong, and Y.-C. Yeo, Full silicidation of silicon gate electrodes using nickel-terbium alloy for MOSFET applications, J. Electrochem. Soc. 153, G337 (2006).
    72. R. T. P. Lee, S. L. Liew, W. D. Wang, E. K. C. Chua, S. Y. Chow, M. Y. Lai, and D. Z. Chi, Fully silicided Ni1–xPtxSi metal gate electrode for p-MOSFETs, Electrochem. Solid-State Lett. 8, G156 (2005).
    73. B.-Y. Tsui and C.-F. Huang, Wide range work function modulation of binary alloys for MOSFET application, IEEE Electron Device Lett. 24, 153 (2003).
    74. B. Chen, R. Jha, H. Lazar, N. Biswas, J. Lee, B. Lee, L. Wielunski, E. Garfunkel, and V. Misra, Influence of oxygen diffusion through capping layers of low work function metal gate electrodes, IEEE Electron Device Lett. 27, 228 (2006).
    75. B. Chen, N. Biswas, and V. Misra, Electrical and physical analysis of MoTa alloy for gate electrode applications, J. Electrochem. Soc. 153, G417 (2006).
    76. B. Chen, R. Jha, and V. Misra, Work function tuning via interface dipole by ultrathin reaction layers using AlTa and AlTaN alloys, IEEE Electron Device Lett. 27, 731 (2006).
    77. R. M. Todi, A. P. Warren, K. B. Sundaram, K. Barmak, and K. R. Coffey, Characterization of Pt–Ru binary alloy thin films for work function tuning, IEEE Electron Device Lett. 27, 542 (2006).
    78. C.-J. Choi, M.-G. Jang, Y.-Y. Kim, M.-S. Jeon, B.-C. Park, S.-J. Lee, R.-J. Jung, H.-d. Yang, M. Chang, and H.-s. Hwang, Effects of High-Pressure Hydrogen Postannealing on the Electrical and Structural Properties of the Pt-Er Alloy Metal Gate on HfO2 Film, Electrochem. Solid-State Lett. 9, G228 (2006).
    79. B. Chen, Y. Suh, J. Lee, J. Gurganus, V. Misra, C. Cabral, and Jr., Physical and electrical analysis of RuxYy alloys for gate electrode applications, Appl. Phys. Lett. 86, 053502 (2005).
    80. T. Matsukawa, C. Yasumuro, H. Yamauchi, M. Masahara, E. Suzuki, and S. Kanemaru, Work function uniformity of Al–Ni alloys obtained by scanning Maxwell-stress microscopy as an effective tool for evaluating metal transistor gates, Appl. Phys. Lett. 86, 094104 (2005).
    81. K.-S. Chang, M. L. Green, J. Suehle, E. M. Vogel, H. Xiong, J. Hattrick-Simpers, I. Takeuchi, O. Famodu, K. Ohmori, P. Ahmet, T. Chikyow, P. Majhi, B.-H. Lee, and M. Gardner, Combinatorial study of Ni–Ti–Pt ternary metal gate electrodes on HfO2 for the advanced gate stack, Appl. Phys. Lett. 89, 142108 (2006).
    82. E. K. Evangelou, N. Konofaos, X. A. Aslanoglou, C. A. Dimitriadis, P. Patsalas, S. Logothetidis, M. Kokkoris, E. Kossionides, R. Vlastou, and R. Groetschel, Characterization of magnetron sputtering deposited thin films of TiN for use as a metal electrode on TiN/SiO2/Si metal–oxide–semiconductor devices, J. Appl. Phys. 88, 7192 (2000).
    83. K. S. Kim, Y. C. Jang, K. J. Kim, N.-E. Lee, S. P. Youn, K. J. Roh, and Y. H. Roh, Interface formation and electrical properties of a TiNx/SO2/Si structure for application in gate electrodes, J. Vac. Sci. Technol. A 19, 1164 (2001).
    84. B. Claflin, M. Binger, and G. Lucovsky, Interface studies of tungsten nitride and titanium nitride composite metal gate electrodes with thin dielectric layers, J. Vac. Sci. Technol. A 16, 1757 (1998).
    85. V. V. Afanas'eva, A. Stesmans, L. Pantisano, and T. Schram, Electron photoemission from conducting nitrides (TiNx, TaNx) into SiO2 and HfO2, Appl. Phys. Lett. 86, 232902 (2005).
    86. W. P. Bai, S. H. Bae, H. C. Wen, S. Mathew, L. K. Bera, N. Balasubramanian, N. Yamada, M. F. Li, and D.-L. Kwong, Three-layer laminated metal gate electrodes with tunable work functions for CMOS aApplications, IEEE Electron Device Lett. 26, 231 (2005).
    87. D.-G. Park, H.-J. Cho, K.-Y. Lim, T.-H. Cha, I.-S. Yeo, and J. W. Park, Effects of TiN deposition on the characteristics of W/TiN/SiO2/Si metal oxide semiconductor capacitors, J. Electrochem. Soc. 148, F189 (2001).
    88. D. Gilmer, C. Hobbs, R. Hegde, L. La, O. Adetutu, J. Conner, M. Tiner, L. Prabhu, S. Bagchi, and P. Tobin, Investigation of titanium nitride gates for tantalum pentoxide and titanium dioxide dielectrics, J. Vac. Sci. Technol. A 18, 1158 (2000).
    89. J. W. Lee, C. H. Han, J.-S. Park, and J. W. Park, Electrical characteristics and thermal stability of W, WNx, and TiN barriers in metal/Ta2O5/Si gate devices, J. Electrochem. Soc. 148, G95 (2001).
    90. H.-C. Wen, R. Choi, G. A. Brown, T. Bscke, K. Matthews, H. R. Harris, K. Choi, H. N. Alshareef, H. Luan, G. Bersuker, P. Majhi, D.-L. Kwong, and B. H. Lee, Comparison of effective work function extraction methods using capacitance and current measurement techniques, IEEE Electron Device Lett. 27, 598 (2006).
    91. S. C. Song, B. H. Lee, Z. Zhang, K. Choi, S. H. Bae, and P. Zeitzoff, Impact of metal gate deposition method on characteristics of gate-first MOSFET with Hf-silicate, Electrochem. Solid-State Lett. 8, G261 (2005).
    92. C.-S. Lai, S.-K. Peng, T.-M. Pan, J.-C. Wang, and K.-M. Fan, Work function adjustment by nitrogen incorporation in HfNx gate electrode with post metal annealing, Electrochem. Solid-State Lett. 9, G239 (2006).
    93. H. Y. Yu, H. F. Lim, J. H. Chen, M. F. Li, C. Zhu, C. H. Tung, A. Y. Du, W. D. Wang, D. Z. Chi, and D.-L. Kwong, Physical and electrical characteristics of HfN gate electrode for advanced MOS devices, IEEE Electron Device Lett. 24, 230 (2003).
    94. M. S. Joo, B. J. Cho, N. Balasubramanian, and D.-L. Kwong, Thermal instability of effective work function in metal/high-k stack and its material dependence, IEEE Electron Device Lett. 25, 716 (2004).
    95. J. F. Kang, H. Y. Yu, C. Ren, M.-F. Li, D. S. H. Chan, X. Y. Liu, and D.-L. Kwong, Ultrathin HfO2 (EOT < 0.75 nm) gate stack with TaN/HfN electrodes fabricated using a high-temperature process, Electrochem. Solid-State Lett. 8, G311 (2005).
    96. C. Ren, H. Y. Yu, J. F. Kang, X. P. Wang, H. H. H. Ma, Y.-C. Yeo, D. S. H. Chan, M.-F. Li, and D.-L. Kwong, A dual-metal gate integration process for CMOS with sub-1-nm EOT HfO2 by using HfN replacement gate, IEEE Electron Device Lett. 25, 580 (2004).
    97. N. V. Hoornick, H. D. Witte, T. Witters, C. Zhao, T. Conard, H. Huotari, J. Swerts, T. Schram, J. W. Maes, S. De Gendt, and M. Heyns, Evaluation of atomic layer deposited NbN and NbSiN as metal gate materials, J. Electrochem. Soc. 153, G437 (2006).
    98. K. Choi, H. N. Alshareef, H. C. Wen, H. Harris, H. Luan, Y. Senzaki, P. Lysaght, P. Majhi, and B. H. Lee, Effective work function modification of atomic-layer-deposited- TaN film by capping layer, Appl. Phys. Lett. 89, 032113 (2006).
    99. C. Ren, D. S. H. Chan, X. P. Wang, B. B. Faizhal, M.-F. Li, Y.-C. Yeo, A. D. Trigg, A. Agarwal, N. Balasubramanian, J. S. Pan, P. C. Lim, A. C. H. Huan, and D.-L. Kwong, Physical and electrical properties of lanthanide-incorporated tantalum nitride for n-channel metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett. 87, 073506 (2005).
    100. C. S. Kang, H.-J. Cho, Y. H. Kim, R. Choi, K. Onishi, A. Shahriar, and J. C. Lee, Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications, J. Vac. Sci. Technol. B 21, 2026 (2003).
    101. J. Lu, Y. Kuo, S. Chatterjee, and J.-Y. Tewg, Physical and electrical properties of Ta–N, Mo–N, and W–N electrodes on HfO2 high-k gate dielectric, J. Vac. Sci. Technol. B 24, 349 (2006).
    102. B.-Y. Tsui, C.-F. Huang, and C.-H. Lu, Investigation of molybdenum nitride gate on SiO2 and HfO2 for MOSFET application, J. Electrochem. Soc. 153, G197 (2006).
    103. P. Ranade, H. Takeuchi, T.-J. King, and C. Hu, Work function engineering of molybdenum gate electrodes by nitrogen implantation, Electrochem. Solid-State Lett. 4, G85 (2001).
    104. Y.-S. Suh, G. Heuss, and V. Misra, Characteristics of TaSixNy thin films as gate electrodes for dual gate Si-complementary metal-oxide-semiconductor devices, J. Vac. Sci. Technol. B 22, 175 (2004).
    105. Y.-S. Suh, G. P. Heuss, J.-H. Lee, and V. Misra, Effect of the composition on the electrical properties of TaSixNy metal gate electrodes, IEEE Electron Device Lett. 24, 439 (2003).
    106. Y.-S. Suh, G. P. Heuss, V. Misra, D.-G. Park, and K.-Y. Lim, Thermal stability of TaSixNy films deposited by reactive sputtering on SiO2, J. Electrochem. Soc. 150, F79 (2003).
    107. H. N. Alshareef, H. F. Luan, K. Choi, H. R. Harris, H. C. Wen, M. A. Quevedo-Lopez, P. Majhi, and B. H. Lee, Metal gate work function engineering using AlNx interfacial layers, Appl. Phys. Lett. 88, 112114 (2006).
    108. H. Luan, H. N. Alshareef, H. R. Harris, H. C. Wen, K. Choi, Y. Senzaki, P. Majhi, and B.-H. Lee, Evaluation of titanium silicon nitride as gate electrodes for complementary metal-oxide semiconductor, Appl. Phys. Lett. 88, 142113 (2006).
    109. T.-H. Cha, D.-G. Park, T.-K. Kim, S.-A. Jang, I.-S. Yeo, J.-S. Roh, and J. W. Park, Work function and thermal stability of Ti1-xAlxNy for dual metal gate electrodes, Appl. Phys. Lett. 81, 4192 (2002).
    110. H. N. Alshareef, K. Choi, H. C. Wen, H. Luan, H. Harris, Y. Senzaki, P. Majhi, B. H. Lee, R. Jammy, S. Aguirre-Tostado, B. E. Gnade, and R. M. Wallace, Composition dependence of the work function of Ta1−xAlxNy metal gates, Appl. Phys. Lett. 88, 072108 (2006).
    111. H. Zhong, G. Heuss, V. Misra, H. Luan, C.-H. Lee, and D.-L. Kwong, Characterization of RuO2 electrodes on Zr silicate and ZrO2 dielectrics, Appl. Phys. Lett. 78, 1134 (2001).
    112. H. Zhong, G. Heuss, and V. Misra, Electrical properties of RuO2 gate electrodes for dual metal gate Si-CMOS, IEEE Electron Device Lett. 21, 593 (2000).
    113. W. Gao, J. F. Conley, Jr., and Y. Ono, NbO as gate electrode for n-channel metal-oxide-semiconductor field-effect-transistors, Appl. Phys. Lett. 84, 4666 (2004).
    114. Y. Liang, C. Tracy, E. Weisbrod, P. Fejes, and N. D. Theodore, Effect of SiO2 incorporation on stability and work function of conducting MoO2, Appl. Phys. Lett. 88, 081901 (2006).
    115. S. M. Sze, Physics of semiconductor devices, 2nd ed. (John Wiley & Sons, New York, 1985), Ch. 5, p. 245.
    116. C. A. Mead and W. G. Spitzer, Fermi level position at metal-semiconductor interfaces, Phys. Rev. 134, A713 (1964).
    117. V. Heine, Theory of surface states, Phys. Rev. 138, A1689 (1965).
    118. S. G. Louie and M. L. Cohen, Electronic structure of a metal-semiconductor interface, Phys. Rev. B 13, 2461 (1976).
    119. W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, New and unified model for Schottky barrier and III–V insulator interface states formation, J. Vac. Sci. Technol. 16, 1422 (1979).
    120. M. S. Daw and D. L. Smith, Surface vacancies in InP and GaAlAs, Appl. Phys. Lett. 36, 690 (1980).
    121. H. Hasegawa and H. Ohno, Unified disorder induced gap state model for insulator–semiconductor and metal–semiconductor interfaces, J. Vac. Sci. Technol. B 4, 1130 (1986).
    122. R. T. Tung, Formation of an electric dipole at metal-semiconductor interfaces, Phys. Rev. B 64, 205310 (2001).
    123. W. Mnch, Role of virtual gap states and defects in metal-semiconductor contacts, Phys. Rev. Lett. 58, 1260 (1987).
    124. J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices, J. Vac. Sci. Technol. B 20, 1785 (2000).
    125. H.-J. Cho, T.-H. Cha, K.-Y. Lim, D.-G. Park, J.-Y Kim, J.-J. Kim, S. Heo, I.-S. Yeo, and J. W. Park, Reliability characteristics of W/WN/TaOxNy/SiO2/Si metal oxide semiconductor capacitors, J. Electrochem. Soc. 149, G403 (2002).
    126. C. Hammond, The basics of crystallography and diffraction, 2nd ed. (Oxford University Press, New York, 2001), Chap. 1, p. 10.
    127. W. Ensinger and M. Kiuhci, Cubic nitrides of the sixth group of transition metals formed by nitrogen ion irradiation during metal condensation, Surf. Coat. Technol. 84, 425 (1996).
    128. B. D. Cullity and S. R. Stock, Elements of X-ray diffraction, 3rd ed. (Prentice Hall, New Jersey, 2001), Chap. 5, p.170.
    129. D. K. Schroder, Semiconductor material and device characterization, 2nd ed. (Wiley, New York, 1998), Chap. 6, p. 347.
    130. K. Affolter, H. Kattelus, and M-A. Nicolet, Characterization of W-N alloys formed by sputter deposition, Mater. Res. Soc. Symp. Proc. 47, 167 (1985).
    131. B.–S. Suh, Y.–J. Lee, J.–S. Hwang, and C.–O. Park, Properties of reactively sputtered WNX as Cu diffusion barrier, Thin Solid Films 348, 299 (1999).
    132. S. K. Zhang, Z. W. Fu, L. Ke, F. Lu, Q. Z. Qin, and X. Wang, Properties of interface states at Ta2O5/n-Si interfaces, J. Appl. Phys. 84, 335 (1998).
    133. A. R. Stivers and C. T. Sah, A study of oxide traps and interface states of the silicon-silicon dioxide interface, J. Appl. Phys. 51, 6292 (1980).
    134. M. V. Fischetti, R. Gastaldi, F. Maggioni, and A. Modelli, Positive charge effects on the flatband voltage shift during avalanche injection on Al-SiO2-Si capacitors, J. Appl. Phys. 53, 3129 (1982).
    135. S. M. Sze, Physics of semiconductor devices, 2nd ed. (John Wiley & Sons, New York, 1985), Ch. 7, p. 380.
    136. D. K. Schroder, Semiconductor material and device characterization, 2nd ed. (Wiley, New York, 1998), Chap. 6, p. 337.
    137. B. E. Deal, The current understanding of charges in the thermally oxidized silicon structure, J. Electrochem. Soc. 121, 198C (1974).
    138. S. I. Raider and A. Berman, On the nature of fixed oxide charge, J. Electrochem. Soc. 125, 629 (1978).
    139. K. L. Nagi and C. T. White, A model of interface states and charges at the Si-SiO2 interface: Its predictions and comparison with experiments, J. Appl. Phys. 52, 320 (1981).
    140. R. R. Razouk and B. E. Deal, Dependence of interface state density on silicon thermal oxidation process variables, J. Electrochem. Soc. 126, 1573 (1979).
    141. T. W. Hickmott, Annealing of surface staes in polycrystalline-silicon-gate capacitors, J. Appl. Phys. 48, 723 (1977).
    142. T. Yamada, M. Moriwaki, Y. Harada, S. Fujii, and K. Eriguchi, The metal gate MOS reliability with improved sputtering process for gate electrode, Tech. Dig. – Int. Electron Devices Meet. 1999, 319.
    143. C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from a Ta(OC2H5)5 precursor, J. Appl. Phys. 83, 4823 (1998).
    144. A. Goetzberger and J. C. Irvin, Low-temperature hysteresis effects in metal-oxide-silicon capacitors caused by surface-state trapping, IEEE Trans. Electron Devices 15, 1009 (1968).
    145. J.–G. Hwu, M.–J. Jeng, W.–S. Wang, and Y.–K. Tu, Clockwise C-V hysteresis phenomena of metal–tantalum-oxide–silicon-oxide–silicon (p) capacitors due to leakage current through tantalum oxide, J. Appl. Phys. 62, 4277 (1987).
    146. J.-G. Hwu and M.–J. Jeng, C-V hysteresis instability in aluminum/tantalum oxide/silicon oxide/silicon capacitors due to postmetallization annealing and Co-60 irradiation, J. Electrochem. Soc. 135, 2808 (1988).
    147. Y. Nishioka, S’i. Kimura, H. Shinriki, and K. Mukai, Dielectric characteristics of double layer structure of extremely thin Ta2O5/SiO2 on Si, J. Electrochem. Soc. 134, 410 (1987).
    148. J. Westlinder, T. Schram, L. Pantisano, E. Cartier, A. Kerber, G. S. Lujan, J. Olsson, and G. Groeseneken, On the thermal stability of atomic layer deposited TiN as gate electrode in MOS devices, IEEE Electron Device Lett. 24, 550 (2003).

    下載圖示 校內:2010-07-08公開
    校外:2011-07-08公開
    QR CODE