簡易檢索 / 詳目顯示

研究生: 李懷恩
Li, Hwai-En
論文名稱: 深槽蜿蜒之複式斷面直渠之水理研究
Study of the Meandering Compound Channel Flow
指導教授: 蔡長泰
Tsai, Chang-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 蜿蜒複式河槽水理特性
外文關鍵詞: hydraulic characteristics, meandering compound channels
相關次數: 點閱:53下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 天然沖積河流深槽多屬蜿蜒形態,因而洪水高漲時,在兩岸堤防之間形成蜿蜒複式河槽。本研究以水工模型試驗及二維水深平均模式分析深槽蜿蜒之複式斷面直渠水理特性。由量測結果之分析可看出因彎道離心力的影響,主深槽橫向水面之超高現象影響兩側洪水平原之水位。橫向底床水平的蜿蜒深槽,最大流速係在彎道處接近凸岸,在過度段(直線)則約在中間;由深槽中心的流速量測值可看出有明顯的二次流現象,底床附近二次流由凸岸向凹岸,水面附近則為凹岸向凸岸。深槽蜿蜒複式渠道之水深上漲至洪水平原時,主深槽之流量會因斷面取法而不同。

    Most of the main channels of alluvial rivers are meander. The main channels are forming compound river channel between the embankments during rise of flood. The purpose of the study is to analyze hydraulic characteristics of the meandering compound cross-section channels by experiment in laboratory and alluvial two- dimensional depth average model. The experimental results indicated that the centrifugal force in curved channel cause superelevation of cross current in the main channel affects the stage of floodplains. The maximum velocity occurred near the convex bank of the curved channel in the meander main channel, occurred in middle of the transition reach. The obvious phenomenon of secondary flow has been shown by the measured value of velocity in middle of the main channel. The secondary flow near the river bed was from convex bank to concave bank. However, the secondary flow near the water surface was from concave bank to convex bank. The discharge in the main channel of compound cross-section was different due to cross-section determination during the water depth rise to floodplain.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1研究緣起與目的 1 1-2 前人研究 1 1-3 本文組織 5 第二章 試驗設備與方法 8 2-1 試驗設備與佈置 8 2-2 試驗量測 9 第三章 水深平均二維模式 18 3-1 水深平均二維水流基本方程式 18 3-2 水深平均二維模式 20 3-2-1 差分網格的配置 20 3-2-2 顯示差分方程式之建立 21 3-3 邊界條件與起始條件 25 3-3-1 封閉邊界條件 25 3-3-2 開放邊界條件 26 3-4 起始條件 27 3-5 邊界格點之演算 27 3-6 人工滯性項(Artificial Viscosity) 29 3-7 數值模式穩定性及可蘭數(Courant number) 30 3-8 模式演算流程 31 第四章 實驗結果之分析與模式應用 34 4-1 縱向水面線分析 34 4-2 橫向水面線分析 35 4-2-1 蜿蜒深槽對橫向水面線之影響 35 4-2-2 試驗與數值模擬之比較 36 4-3 流速剖面與流場 37 4-3-1 深度方向之流速剖面及二次流現象 37 4-3-2 深度平均流速量測結果之分析 38 4-3-3 試驗與數值模擬之深度平均流速分佈比較 39 4-4 流量分析 39 4-4-1 主深槽斷面流量 39 4-4-2 洪水平原、主深槽流量與全斷面流量之比值 40 4-4-3 輸水因子 42 第五章 結論與建議 82 5-1 結論 82 5-2 建議 83 參考文獻 84 附錄A 水流基本方程式推導 87 附錄B 水深平均二維方程式推導 90 附錄C MacCormack顯式差分模式求解h、u、v之係數 94

    1. 防洪工程設計手冊,台灣水利局叢書之七十三號,台灣水利局委託中國水利工程學會編印,民國58年6月。
    2. 李振豪,「蜿蜒複式渠流水理特性之研究」,國立嘉義大學土木與水資源工程研究所碩士論文,民國95年6月。
    3. 林鈺敦,「可蘭數對馬科馬可二維沖淤模式之發展與應用」,國立成功大學水利及海洋工程研究所碩士論文 (1999)。
    4. 陳孝增譯「治河與護岸」,經濟部水利專刊編譯小組出版,民國46年1月。(譯自“River Traning and Bank Protection”, Economic Commission for Asia and Far East, Bureau of Flood and Water Resoures Development.)
    5. 許長安,「明渠跨臨界流平面二維數值模式」,中興工程第59期,民國87年。
    6. 清水康行、板倉忠興,「沖積河川二維流況之河床變動計算」,北海道開發局土木試驗所,北海道 (1986)。
    7. 黃姣娉,「平面二維感潮河川的數值模擬」,國立台灣大學土木工程學研究所,碩士論文,民國83年6月。
    8. 曾明性,“Two-dimensional Shallow Water Flows Simulation Using TVD-MacCormack Scheme” (1999).
    9. 蔡智恆,「定岸沖積河流水理及底床演變之模擬」,國立成功大學水利及海洋工程研究所博士論文,民國89年6月。
    10. 楊錦釧,「非穩定流飄砂輸送之模式」,行政院國家科學委員會專題研究計劃報告,1988。
    11. 鄭思蘋,「河川束縮段之二維流場之數值模擬」,國立台灣大學農業工程研究所碩士論文,民國86年6月。
    12. 譚維炎、胡四一,「錢塘江口涌潮的二維數值模擬」,水科學進展,第6卷,第2期,1995年6月。
    13. Abril, J. B., Knight, D. W. (2004). “Stage-discharge prediction for rivers in flood applying a depth-averaged model.” J. Hydr. Res., 42(6), 616-629.
    14. Cao, Z., Meng, J., Pender, G.., and Wallis, S. (2006). “Flow resistance and momentum flux in compound open channels.” J. Hydraul. Eng., 132(12), 1272-1282.
    15. Chang, H. H. 1988. Fluvial Processes in River Engineering. John Wiley & Sons New York.
    16. Chow V. T. (1959), Open-Channel Hydraulics. McGraw-Hill, New York.
    17. Ervine, D. A., and Ellis, J. (1987). “ Experimental and computation aspects of overbank floodplain flow.” Trans. Roy. Soc. of Edin. (Earth Sciences), 78(Dec.), 315-325.
    18. Ervine, D. A., Willetts, B. B., Sellin, R. H. J., and Lorena, M. (1993). “Factors affecting conveyance in meandering compound flows.” J. Hydraul. Eng., 119(12), 1383-1399.
    19. Ervine, D. A., Babaeyan-Koopaei, K., and Sellin, R. H. J. (2000). “Two-dimesional solution for straight and meandering overbank flows.” J. Hydraul. Eng., 126(9), 653-669.
    20. Elliott, S. C. A., and Sellin, R. H. J. (1990). “SERC flood channel facility: skewed flow experiments.” J. Hydr. Res., 28(2), 197-214.
    21. Greenhill, R. K., and Sellin, R. H. J. (1993). “Development of a simple method to predict discharges in compound meandering channels.” Proc. I. C. E., Water Maritime and Energy, 101(1), 37-44.
    22. Henderson, F. M. 1966. Open Channel Flow, Macmillan, New York, N. Y. USA.
    23. Hydraulic capacity of meandering channels in straight floodways (1956). U.S. Army Corps of Engineers, Vicksburg Miss.
    24. James, C. S., and Wark, J. B. (1992). “Conveyance estimation for meandering channel.” Report SR 329, HR Wallingford, UK.
    25. Myers, R. C., and Lyness, J. F. (1997). “Discharge ratios in smooth and rough compound channels.” J. Hydraul. Eng., 123(3), 182-188.
    26. Patra, K. C., and Kar, S. K. (2000). “Flow interaction of meandering river with floodplains.” J. Hydraul. Eng., 126(8), 593-604.
    27. Shiono, K., and Muto, Y. (1998). “Complex flow mechanisms in compound meandering channels with over bank flow.” J. Fluid Mech., vol. 376, 221-261.
    28. Shiono, K., Al-Romaih, J. S., and Knight, D. W. (1999b). “Stage-dischrage assessment in compound meandering channels.” J. Hydraul. Eng., 125(1), 66-77.
    29. Zarrati, A. R., Tamai, N., and Jin, Y. C. (2005). “Mathematical modeling of meandering channels with a generalized depth averaged model.” J. Hydraul. Eng., 131(6), 467-475.

    下載圖示 校內:立即公開
    校外:2007-08-30公開
    QR CODE