| 研究生: |
林宛嫺 Lin, Wan-Hsien |
|---|---|
| 論文名稱: |
有機金屬化學氣相沉積氧化鋅鎂磊晶薄膜之鑑定及其表面化學之研究 Characterizations and Surface Chemistry of Metalorganic Chemical Vapor Deposited Zn1-xMgxO Epitaxial Films |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 191 |
| 中文關鍵詞: | 化學氣相沉積 、氧化鋅鎂 、極性 、能隙調控 、蝕刻 、光觸媒反應 |
| 外文關鍵詞: | MOCVD, ZnMgO, polarity, band gap engineering, etching, photocatalytic reaction |
| 相關次數: | 點閱:82 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究主軸主要區分為兩部分。第一部份,乃利用有機金屬氣相沉積法,藉由不同鎂濃度的合金化方式,成功於鋁酸鋰及鎵酸鋰基板上製備出可調控能隙的非極性(10-10)與鋅極性面之氧化鋅鎂磊晶薄膜,研究其結晶結構與光學特性。第二部份,則利用“光輔助掃描探針顯微鏡”探討氧化鋅磊晶薄膜之表面化學行為,包含氧化鋅分別與酸性或鹼性溶液反應的溶蝕機制,以及金奈米粒子優化之氧化鋅磊晶薄膜光觸媒反應中,金奈米粒子所扮演的角色。
本研究嘗試於鋁酸鋰(100)與氧化鋁(10-10)基板沉積不同鎂濃度之非極性氧化鋅鎂磊晶薄膜。晶體結構鑑定結果顯示,於本實驗室化學氣相沉積系統的最佳反應條件下,唯有鋁酸鋰(100)基板能成功製備出單晶(10-10)氧化鋅鎂薄膜,且鎂濃度可控制於0到0.113之間。反觀氧化鋁(10-10)基板所製備出之氧化鋅鎂薄膜同時存在(10-10)和(101-3)晶面。此外,在(10-10)氧化鋅鎂薄膜之陰極發光圖譜觀察到,隨鎂濃度增加,氧化鋅鎂薄膜之近能隙邊緣發光能量位置有明顯藍位移現象。此結果證實於鋁酸鋰(100)基板成長之非極性(10-10)氧化鋅鎂磊晶薄膜具有能隙可調控性。
本研究亦利用具備高空間解析度的陰極發光系統探討非極性(10-10)氧化鋅磊晶薄膜內基面疊差之發光行為。利用實驗過程參數的調控證實基面疊差內延氧化鋅c軸方向存在一極化電場。本研究更確定了基面疊差於低溫與常溫之發光行為。另一方面,藉由氧化鋅鎂磊晶薄膜內之基面疊差陰極發光實驗結果,推測不同鎂濃度改變對基面疊差發光的影響,唯此部分討論仍須理論計算或數據統計分析相輔方可證實。再者,我們觀察到於鎵酸鋰(100)基板上成長之非極性(10-10)氧化鋅磊晶薄膜,其陰極發光圖譜由基面疊差發光所主導,且由發光點推測之基面疊差密度較與鋁酸裡(100)基板所成長之氧化鋅薄膜高,此結果可歸因為氧化鋅薄膜於兩基板上不同的成長行為所致。
本研究於鎵酸鋰(001)基板上成長極性之氧化鋅鎂磊晶薄膜。結構鑑定結果顯示氧化鋅鎂薄膜內並無氧化鎂或鎂金屬的存在。由掃描式穿遂電子顯微鏡之收斂束電子繞射結果與酸蝕的結果證實氧化鋅鎂磊晶薄膜的表面為鋅極性。此外,氧化鋅鎂磊晶薄膜之近能隙邊緣發光能量位置隨鎂濃度增加呈現藍位移現象,證明於鎵酸鋰(001)基板成長鋅極性之氧化鋅鎂薄膜同樣具備能隙可調控性。
本研究利用氧化鋅的半導體特性發展“光輔助掃描穿遂顯微鏡”,於常溫常壓環境下探究(0001)氧化鋅磊晶薄膜於氫氧化鈉處理後之原子級表面幾何結構。未經過氫氧化鈉處理之氧化鋅磊晶薄膜表面具備兩種不同形貌,分別為層狀堆疊六角錐與六角形平面。光輔助掃描穿遂顯微鏡之圖像顯示,此兩種不同形貌之氧化鋅晶體存在非等向性蝕刻行為。規則層狀晶面的六角錐隨氫氧化鈉處理的時間增加,逐漸變得不規則且表面呈現圓形狀;反觀六角形平面在未經氫氧化鈉處理前,即存在小六角形凹洞,且凹洞隨氫氧化鈉處理時間增加而擴大,同時在表面上發展出平坦的三角形階梯狀排列,以穩定化氧化鋅之極性表面。
本研究利用光降解甲基橙溶液鑑定金奈米粒子優化之非極性(10-10)氧化鋅磊晶薄膜的光觸媒活性。使用“光輔助表面電位顯微鏡”量測未濺鍍金奈米粒子的氧化鋅和不同濺鍍條件之金-氧化鋅複合物於黑暗中與紫外光照射下的功函數值。金-氧化鋅複合物光降解甲基橙的反應系統內共具備三個界面,分別為金奈米粒子與氧化鋅,氧化鋅與甲基橙溶液,以及金奈米粒子與甲基橙溶液的界面。藉由表面電位顯微鏡於黑暗中與照光下量測到各樣品的功函數結果,針對此三種界面提出個別的能階圖,並加以探討光激發載子於各界面的傳輸行為。研究結果顯示,金奈米粒子與氧化鋅為歐姆界面,促進氧化鋅的光載子分離效率。而由量測結果所推算出各個金-氧化鋅複合物的表面光電壓值,與該複合物的光觸媒活性具有高關聯性。顯示金奈米粒子的密度影響氧化鋅中光電洞濃度,對於甲基橙溶液界面的自由基形成與光觸媒活性有決定性的影響。
The subjects of this thesis are classified into two parts. First, growth and band gap engineering of nonpolar (10-10) and Zn-polar (0001) Zn1-xMgxO epitaxial films on LAO and LGO substrates were conducted using metalorganic vapor deposition (MOCVD). Crystal and optical properties of as-grown Zn1-xMgxO epilayers are studied. In the second part, the surface chemistry of ZnO, including the etching behaviors of Zn-polar ZnO in the acidic/alkaline solutions as well as the photoactivity of (10-10) ZnO epitaxial films were investigated using photo-assisted scanning probe microscopy techniques.
In the first part, we demonstrate the growth and crystal characterization of (10-10) Zn1-xMgxO films with various Mg contents (0 ≤ x ≤ 0.113) on two well-known substrates for preparation of nonpolar ZnO films, i.e., gamma-LiAlO2 (100) and sapphire (10-10). Epitaxial (10-10) Zn1-xMgxO films are attainable when gamma-LiAlO2 (100) substrates are used while those with both (10-10) and (101-3) orientations are obtained on sapphire (10-10) substrates. Obvious blue shifts of the near-band-edge (NBE) emissions with increasing Mg composition are observed in the cathodoluminescence (CL) spectra of the (10-10) Zn1-xMgxO films, confirming a feasible band gap engineering in the (10-10) Zn1-xMgxO films on the gamma-LiAlO2 (100) substrates.
The luminescence of basal plane stacking faults (BSFs) in (10-10) Zn1-xMgxO epilayers grown on gamma-LiAlO2 (100) substrate is analyzed using spatially resolved CL spectroscopy. A polarization field in the SFs along the c-axis of the (10-10) ZnO epilayer is experimentally demonstrated. Moreover, we clearly identify the BSF-related transition from low temperatures to room temperature. Based on our CL observations, we temporarily deduce the transition of the BSF-related emissions as a function of Mg compositions in the (10-10) ZnxMg1-xO epilayers. A dominant BSF-associated emission is observed in a (10-10) ZnO epilayer grown on a β-LiGaO2 (100) substrate compared with that on a gamma-LiAlO2 (100) substrate, which can be ascribed to the different growth behavior.
In addition to m-plane ZnO epitaxial films, growth and characterization of Zn-polar (0001) Zn1-xMgxO epilayers on the small lattice-mismatched β-LiGaO2 (001) substrates were also performed using MOCVD. Structure characterizations by employing X-ray diffraction (XRD) and transmission electron microscope (TEM) demonstrate that no MgO or Mg cluster exists throughout the Zn1-xMgxO films. Together with an apparent blue shift of the NBE emission with increasing Mg content observed in the CL spectra of the Zn-polar (0001) Zn1-xMgxO films, a successful band gap engineering in the epitaxial (0001) Zn1-xMgxO films on the (001) LiGaO2 substrates has been achieved.
In the second part, a photo-assisted scanning tunneling microscopy (STM) were developed to investigate the surface geometric structures of epitaxial (0001) ZnO films treated by NaOH(aq) in ambient condition. Two types of topographic features, i.e. hexagonal pyramid and flat plane, are observed in the as-grown epitaxial (0001) ZnO film. Photo-assisted STM images reveal the anisotropic etching behaviors of these two topographic features. The faceted and symmetrically layered hexagonal-pyramid feature is getting asymmetrical and rounded while few small hexagonal pits on the as-grown flat ZnO(0001)-Zn surface are developed to asymmetrically hexagonal cavities with flat terraces and steps after different period of NaOH treatments.
Au nanoparticles (NPs) enhanced photocatalytic activity of the (10-10) ZnO epilayer by means of photodegradation of methyl orange (MO) solution was demonstrated in this thesis. Work functions of pristine ZnO and Au-ZnO composites are investigated in the dark and under UV illumination utilizing Kelvin probe force microscopy (KPFM). Based on KPFM results, we propose the band diagrams of three fundamental interfaces, including Au NP/ZnO, ZnO/MO(aq) and Au NP/MO(aq). An Ohmic contact is formed at the Au NP/ZnO interface, which facilitates photoelectrons transfer from ZnO to Au NP for efficient charge separation. On the other hand, hole transfer at the Schottky interface of ZnO/MO(aq) is responsible for the degradation of MO molecules. The surface photovoltages (SPV) values of the pristine ZnO and the Au-ZnO composites show a systematic correlation with their photocatalytic activities. It suggests that the density of Au NPs influences the excess hole concentration and therefore the photocatalytic activity of ZnO.
[1] C.-H. Ku and J.-J. Wu, "Chemical Bath Deposition of ZnO Nanowire-nanoparticle Composite Electrodes for Use in Dye-sensitized Solar Cells", Nanotechnology, 18, 505706 (2007).
[2] X. Du, Z. Mei, Z. Liu, Y. Guo, T. Zhang, Y. Hou, Z. Zhang, Q. Xue and A. Y. Kuznetsov, "Controlled Growth of High-Quality ZnO-Based Films and Fabrication of Visible-Blind and Solar-Blind Ultra-Violet Detectors", Adv. Mater., 21, 4625 (2009).
[3] N. O. V. Plank, I. Howard, A. Rao, M. W. B. Wilson, C. Ducati, R. S. Mane, J. S. Bendall, R. R. M. Louca, N. C. Greenham, H. Miura, R. H. Friend, H. J. Snaith and M. E. Welland, "Efficient ZnO Nanowire Solid-State Dye-Sensitized Solar Cells Using Organic Dyes and Core-shell Nanostructures", J. Phys. Chem. C, 113, 18515 (2009).
[4] N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang and Y. Lu, "Epitaxial ZnO Piezoelectric Thin Films for SAW Filters", Mater. Sci. Semicon. Proc., 2, 247 (1999).
[5] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, "Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors", Appl. Phys. Lett., 84, 3654 (2004).
[6] X. L. Guo, J. H. Choi, H. Tabata and T. Kawai, "Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-emitting Diode", Jpn. J. Appl. Phys., 40, L177 (2001).
[7] A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson and J. R. Durrant, "Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures", J. Mater. Chem., 16, 2088 (2006).
[8] P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant and J. Nelson, "Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer", J. Phys. Chem. B, 110, 7635 (2006).
[9] Y.-H. Sung, V. D. Frolov, S. M. Pimenov and J.-J. Wu, "Investigation of charge transfer in Au nanoparticle-ZnO nanosheet composite photocatalysts", Phys. Chem. Chem. Phys., 14, 14492 (2012).
[10] X. D. Wang, C. J. Summers and Z. L. Wang, "Large-scale Hexagonal-patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays", Nano Lett., 4, 423 (2004).
[11] C. T. Wu and J. J. Wu, "Room-temperature Synthesis of Hierarchical Nanostructures on ZnO Nanowire Anodes for Dye-sensitized Solar Cells", J. Mater. Chem., 21, 13605 (2011).
[12] C. T. Wu, W. P. Liao and J. J. Wu, "Three-dimensional ZnO Nanodendrite/Nanoparticle Composite Solar Cells", J. Mater. Chem., 21, 2871 (2011).
[13] Y. F. Chen, D. M. Bagnall, Z. Q. Zhu, T. Sekiuchi, K. T. Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen and T. Goto, "Growth of ZnO Single Crystal Thin Films on c-Plane (0001) Sapphire by Plasma Enhanced Molecular Beam Epitaxy", J. Cryst. Growth, 181, 165 (1997).
[14] T. Moriyama and S. Fujita, "Growth Behavior of Nonpolar ZnO on m-plane and γ-plane Sapphire by Metalorganic Vapor Phase Epitaxy", Jpn. J. Appl. Phys., 44, 7919 (2005).
[15] B. P. Zhang, K. Wakatsuki, N. T. Binh, N. Usami and Y. Segawa, "Effects of Growth Temperature on the Characteristics of ZnO Epitaxial Films Deposited by Metalorganic Chemical Vapor Deposition", Thin Solid Films, 449, 12 (2004).
[16] S. Yang, B. H. Lin, C. C. Kuo, H. C. Hsu, W. R. Liu, M. O. Eriksson, P. O. Holtz, C. S. Chang, C. H. Hsu and W. F. Hsieh, "Improvement of Crystalline and Photoluminescence of Atomic Layer Deposited m-Plane ZnO Epitaxial Films by Annealing Treatment", Cryst. Growth Des., 12, 4745 (2012).
[17] S. Yang, C. C. Kuo, W. R. Liu, B. H. Lin, H. C. Hsu, C. H. Hsu and W. F. Hsieh, "Photoluminescence associated with basal stacking faults in c-plane ZnO epitaxial film grown by atomic layer deposition", Appl. Phys. Lett., 100, 101907(2012).
[18] S. R. Hejazi, H. R. M. Hosseini and M. S. Ghamsari, "The Role of Reactants and Droplet Interfaces on Nucleation and Growth of ZnO Nanorods Synthesized by Vapor-liquid-solid (VLS) Mechanism", J. Alloy Compd., 455, 353 (2008).
[19] T.-M. Shang, J.-H. Sun, Q.-F. Zhou and M.-Y. Guan, "Controlled Synthesis of Various Morphologies of Nanostructured Zinc Oxide: Flower, Nanoplate, and Urchin", Cryst. Res. Technol., 42, 1002 (2007).
[20] Y. Qiu, W. Chen and S. Yang, "Facile Hydrothermal Preparation of Hierarchically Assembled, Porous Single-crystalline ZnO Nanoplates and their Application in Dye-sensitized Solar Cells", J. Mater. Chem., 20, 1001 (2010).
[21] X. Y. Kong and Z. L. Wang, "Polar-surface Dominated ZnO Nanobelts and the Electrostatic Energy Induced Nanohelixes, Nanosprings, and Nanospirals", Appl. Phys. Lett., 84, 975 (2004).
[22] M. Shimizu, H. Kamei, M. Tanizawa, T. Shiosaki and A. Kawabata, Low-Temperature Growth of ZnO Film by Photo-MOCVD", J. Cryst. Growth, 89, 365 (1988).
[23] T. Kaufmann, G. Fuchs, M. Webert, S. Frieske and M. Gackle, "MOCVD Layer Growth of ZnO Using Adducts of Dimethylzinc and Diethylzinc", Cryst. Res.Tech., 24, 269 (1989).
[24] P. F. Carcia, R. S. McLean, M. H. Reilly and G. Nunes, "Transparent ZnO Thin-film Transistor Fabricated by RF Magnetron Sputtering", Appl. Phys. Lett., 82, 1117 (2003).
[25] E. Cagin, J. Yang, W. Wang, J. D. Phillips, S. K. Hong, J. W. Lee and J. Y. Lee, "Growth and Structural Properties of m-Plane ZnO on MgO (001) by Molecular Beam Epitaxy", Appl. Phys. Lett., 92, 233505 (2008).
[26] J. W. Lee, S. K. Han, S. K. Hong, J. Y. Lee and T. Yao, "Characterization of Microstructure and Defects in Epitaxial ZnO (11-20) Films on Al2O3 (1-102) Substrates by Transmission Electron Microscopy", J. Cryst. Growth, 310, 4102 (2008).
[27] W.-H. Lin, M. M. C. Chou and J.-J. Wu, "Growth, Characterization, and Polarity Identification of (0001) Zn1-xMgxO Epitaxial Films on Lattice-Matched β-LiGaO2 (001) Substrates", J. Electrochem. Soc., 158, D28 (2011).
[28] W.-H. Lin, J.-J. Wu, M. M. C. Chou and L. Chang, "Growth and Characterization of Nonpolar (10-10) Zn1-xMgxO (0 x 0.113) Epitaxial Films: A Comparison of γ-LiAlO2 (100) and Sapphire (10-10) Substrates", Cryst. Growth Des., 9, 3301 (2009).
[29] Y.-C. Liang, "Growth and Characterization of Nonpolar a-Plane ZnO Films on Perovskite Oxides with Thin Homointerlayer", J. Alloy Compd., 508, 158 (2010).
[30] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda and H. Koinuma, "Band Gap Engineering Based on MgxZn1-xO and CdyZn1-yO Ternary Alloy Films", Appl. Phys. Lett., 78, 1237 (2001).
[31] A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas and O. W. Holland, "Optical and Structural Properties of Epitaxial MgxZn1-xO Alloys", Appl. Phys. Lett., 75, 3327 (1999).
[32] T. Hanada, eds. T. Yao and S.-K. Hong, Springer, 2009, vol. 12, p. 3.
[33] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, "A Comprehensive Review of ZnO Materials and Devices", J. Appl. Phys., 98, 041301 (2005).
[34] A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. W. Ok and T. Y. Seong, "Growth and Characterization of Hypothetical Zinc-blende ZnO Films on GaAs(001) Substrates with ZnS Buffer Layers", Appl. Phys. Lett., 76, 550 (2000).
[35] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, M. Razeghi and D. K. Gaskill, "Thermal-Stability of GaN Thin-film Grown on (0001) Al2O3, (01-12) Al2O3 and (0001)Si 6H-SiC Substrates", J. Appl. Phys., 76, 236 (1994).
[36] T. Ohnishi, A. Ohtomo, M. Kawasaki, K. Takahashi, M. Yoshimoto and H. Koinuma, "Determination of Surface Polarity of c-axis Oriented ZnO Films by Coaxial Impact-collision Ion Scattering Spectroscopy", Appl. Phys. Lett., 72 (1998).
[37] J. Tafto, "Structure-Factor Phase Information from Two-Beam Electron Diffraction", Phys. Rev. Lett., 51, 654 (1983).
[38] J. Jasinski, D. Zhang, J. Parra, V. Katkanant and V. J. Leppert, "Application of Channeling-enhanced Electron Energy-loss Spectroscopy for Polarity Determination in ZnO Nanopillars", Appl. Phys. Lett., 92, 093104 (2008).
[39] T. Mitate, Y. Sonoda and N. Kuwano, "Polarity Determination of Wurtzite and Zincblende Structures by TEM", Phys. Status Solidi A, 192, 383 (2002).
[40] S.-K. Hong, T. Hanada, H.-J. Ko, Y. Chen, T. Yao, D. Imai, K. Araki, M. Shinohara, K. Saitoh and M. Terauchi, "Control of Crystal Polarity in a Wurtzite Crystal: ZnO Films Grown by Plasma-assisted Molecular-beam Epitaxy on GaN", Phys. Rev. B, 65, 115331 (2002).
[41] M. R. Wagner, T. P. Bartel, R. Kirste, A. Hoffmann, J. Sann, S. Lautenschlager, B. K. Meyer and C. Kisielowski, "Influence of Substrate Surface Polarity on Homoepitaxial Growth of ZnO layers by Chemical Vapor Deposition", Phys. Rev. B, 79, 035307 (2009).
[42] H. Tampo, P. Fons, A. Yamada, K. K. Kim, H. Shibata, K. Matsubara, S. Niki, H. Yoshikawa and H. Kanie, "Determination of Crystallographic Polarity of ZnO Layers", Appl. Phys. Lett., 87, 141904 (2005).
[43] A. N. Mariano and R. E. Hanneman, "Crystallographic Polarity of ZnO Crystals", J. Appl. Phys., 34, 384 (1963).
[44] O. Dulub, U. Diebold and G. Kresse, "Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn", Phys. Rev. Lett., 90, 016102 (2003).
[45] J. H. Lai, S. H. Su, H. H. Chen, J. C. A. Huang and C. L. Wu, "Stabilization of ZnO Polar Plane with Charged Surface Nanodefects", Phys. Rev. B, 82, 155406 (2010).
[46] M. W. Allen, P. Miller, R. J. Reeves and S. M. Durbin, "Influence of spontaneous polarization on the electrical and optical properties of bulk, single crystal ZnO", Appl. Phys. Lett., 90, 062104 (2007).
[47] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. H. Ploog, "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes", Nature, 406, 865 (2000).
[48] T. Makino, A. Ohtomo, C. H. Chia, Y. Segawa, H. Koinuma and M. Kawasaki, "Internal Electric Field Effect on Luminescence Pproperties of ZnO/(Mg,Zn)O Quantum Wells", Physica E, 21, 671 (2004).
[49] C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter and C. Deparis, "Internal Electric Field in Wurtzite ZnO/Zn0.78Mg0.22O Quantum Wells", Phys. Rev. B, 72, 241305 (2005).
[50] M. A. Moram and M. E. Vickers, "X-ray Diffraction of III-Nitrides", Rep. Prog. Phys., 72, 036502 (2009).
[51] J. Zuniga-Perez, V. Munoz-Sanjose, E. Palacios-Lidon and J. Colchero, "Polarity Effects on ZnO Films Grown along the Nonpolar [1120] direction", Phys. Rev. Lett., 95, 226105 (2005).
[52] J. Zuniga-Perez, V. Munoz-Sanjose, E. Palacios-Lidon and J. Colchero, "Facets Evolution and Surface Electrical Properties of Nonpolar m-Plane ZnO Thin Films", Appl. Phys. Lett., 88, 261912 (2006).
[53] Y. T. Ho, W. L. Wang, C. Y. Peng, M. H. Liang, J. S. Tian, C. W. Lin and L. Chang, "Growth of Nonpolar (11-20) ZnO Films on LaAlO3 (001) Substrates", Appl. Phys. Lett., 93, 121911 (2008).
[54] M. M. C. Chou, D.-R. Hang, C. Chen, S. C. Wang and C.-Y. Lee, "Nonpolar a-Plane ZnO Growth and Nucleation Mechanism on (100) (La, Sr)(Al, Ta)O3 Substrate", Mater. Chem. Phys., 125, 791 (2011).
[55] M. M. C. Chou, L. W. Chang, D. R. Hang, C. L. Chen, D. S. Chang and C. A. Li, "Crystal Growth of Nonpolar m-Plane ZnO on a Lattice-Matched (100) r-LiAlO2 Substrate", Cryst. Growth Des., 9, 2073 (2009).
[56] M. M. C. Chou, D. R. Hang, C. L. Chen and Y. H. Liao, "Epitaxial Growth of Nonpolar m-Plane ZnO (10-10) on Large-size LiGaO2 (100) Substrates", Thin Solid Films, 519, 3627 (2011).
[57] J. Y. Yu, T. H. Huang, L. W. Chang, Y. H. Liao, M. M. C. Chou and D. Gan, "Growth Behavior of m-Plane ZnO Epilayer on (100) LiGaO2 by Chemical Vapor Deposition", J. Electrochem. Soc., 158, H1166 (2011).
[58] T. -H. Huang, L. Chang, M. M. C. Chou and U. Jahn, "Formation Mechanism of {0001} ZnO Epitaxial Layer on γ-LiAlO2 (100) Substrate by Chemical Vapor Deposition", J. Electrochem. Soc., 158, H38 (2011).
[59] J. Narayan and B. C. Larson, "Domain Epitaxy: A Unified Paradigm for Thin Film Growth", J. Appl. Phys., 93, 278 (2003).
[60] J. M. Chauveau, P. Vennegues, M. Lauegt, C. Deparis, J. Zuniga-Perez and C. Morhain, "Interface Structure and Anisotropic Strain Relaxation of Nonpolar Wurtzite (11-20) and (10-10) Orientations: ZnO Epilayers Grown on Sapphire", J. Appl. Phys., 104, 073535 (2008).
[61] J. W. Lee, S. J. Pearton, C. R. Abernathy, J. M. Zavada and B. L. H. Chai, "Wet and Dry Etching of LiGaO2 and LiAlO2", J. Electrochem. Soc., 143, L169 (1996).
[62] M. M. C. Chou, H. C. Huang, D. S. Gan and C. W. C. Hsu, "Defect Characterizations of r-LiAlO2 Single Crystals", J. Cryst. Growth, 291, 485 (2006).
[63] M. Marezio, "Crystal Structure of LiGaO2", Acta Crystllogr., 18, 481 (1965).
[64] T. Ishii, Y. Tazoh and S. Miyazawa, "Single-crystal Growth of LiGaO2 for a Substrate of GaN Thin Films", J. Cryst. Growth, 186, 409 (1998).
[65] P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado and M. Razeghi, "Metalorganic Chemical Vapor Deposition of Monocrystalline GaN Thin Films on beta-LiGaO2 Substrates", Appl. Phys. Lett., 69, 2116 (1996).
[66] C. J. Rawn and J. Chaudhuri, "High Temperature X-ray Ddiffraction Study of LiGaO2", J. Cryst. Growth, 225, 214 (2001).
[67] W. A. Doolittle, S. B. Kang and A. Brown, "MBE Growth of High Quality GaN on LiGaO2 for High Frequency, High Power Electronic Applications", Solid State Electron., 44, 229 (2000).
[68] T. H. Huang, S. M. Zhou, H. Teng, H. Lin, J. Wang, P. Han and R. Zhang, "Growth and Characterization of ZnO Films on (001), (100) and (010) LiGaO2 Substrates", J. Cryst. Growth, 310, 3144 (2008).
[69] S. L. Liu, S. M. Zhou, Y. Z. Wang, X. Zhang, X. M. Li, C. T. Xia, Y. Hang and J. Xu, "Epitaxial Growth of ZnO Thin Films on LiGaO2 Substrates by Pulsed-laser Deposition", J. Cryst. Growth, 292, 125 (2006).
[70] T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann and M. Eickhoff, "Optical Properties and Structural Characteristics of ZnMgO Grown by Plasma Assisted Molecular Beam Epitaxy", J. Appl. Phys., 105, 023505 (2009).
[71] A. El-Shaer, A. Bakin, M. Al-Suleiman, S. Ivanov, A. C. Mofor and A. Waag, "Growth of Wide Band Gap Wurtzite ZnMgO Layers on (0001) Al2O3 by Radical-source Molecular Beam Epitaxy", Superlattice Microst., 42, 129 (2007).
[72] A. Ashrafi and Y. Segawa, "Blueshift in MgxZn1-xO Alloys: Nature of Bandgap Bowing", J. Appl. Phys., 104, 123528 (2008).
[73] S. Muthukumar, J. Zhong, Y. Chen, Y. Lu and T. Siegrist, "Growth and Structural Analysis of Metalorganic Chemical Vapor Deposited (11-20) MgxZn1-xO (0 < x < 0.33) Films on (01-12) R-plane Al2O3 Substrates", Appl. Phys. Lett., 82, 742 (2003).
[74] G. Saraf, T. Siegrist and Y. Lu, "Structural Anisotropy in a-MgxZn1-xO (0 x 0.33) films on γ-sapphire", J. Vac. Sci. Technol. B, 27, 1620 (2009).
[75] K. Shi, A. L. Yang, J. Wang, H. P. Song, X. Q. Xu, L. Sang, H. Y. Wei, S. Y. Yang, X. L. Liu, Q. S. Zhu and Z. G. Wang, "The Effect of Different Oriented Sapphire Substrates on the Growth of Polar and Non-polar ZnMgO by MOCVD", J. Cryst. Growth, 314, 39 (2011).
[76] A. L. Yang, H. Y. Wei, X. L. Liu, H. P. Song, H. B. Fan, P. F. Zhang, G. L. Zheng, S. Y. Yang, Q. S. Zhu and Z. G. Wang, "Characterization of ZnMgO Hexagonal-nanotowers/films on m-Plane Sapphire Synthesized by Metal Organic Chemical Vapour Deposition", J. Phys. D-Appl. Phys., 41, 205416 (2008).
[77] H. Matsui, N. Hasuike, H. Harima and H. Tabata, "Growth Evolution of Surface Nanowires and Large Anisotropy of Conductivity on MgZnO/ZnO Quantum Wells Based on M-nonpolar (10-10) ZnO", J. Appl. Phys., 104, 094309 (2008).
[78] L. Beaur, T. Bretagnon, C. Brimont, T. Guillet, B. Gil, D. Tainoff, M. Teisseire and J. M. Chauveau, "Low Temperature Reflectivity Study of Nonpolar ZnO/(Zn,Mg)O Quantum Wells Grown on m-Plane ZnO Substrates", Appl. Phys. Lett., 98, 101913 (2011).
[79] L. Beaur, T. Bretagnon, B. Gil, A. Kavokin, T. Guillet, C. Brimont, D. Tainoff, M. Teisseire and J. M. Chauveau, "Exciton Radiative Properties in Nonpolar Homoepitaxial ZnO/(Zn,Mg)O Quantum Wells", Phys. Rev. B, 84, 165312 (2011).
[80] A. L. Yang, H. P. Song, D. C. Liang, H. Y. Wei, X. L. Liu, P. Jin, X. B. Qin, S. Y. Yang, Q. S. Zhu and Z. G. Wang, "Photoluminescence Spectroscopy and Positron Annihilation Spectroscopy Probe of Alloying and Annealing Effects in Nonpolar m-Plane ZnMgO Thin Films", Appl. Phys. Lett., 96, 151904 (2010).
[81] C.-H. Ku, H.-H. Chiang and J.-J. Wu, "Bandgap Engineering of Well-aligned Zn1-xMgxO Nanorods Grown by Metalorganic Chemical Vapor Deposition", Chem. Phys. Lett., 404,132 (2005).
[82] W. L. Wang, C. Y. Peng, Y. T. Ho, S. C. Chuang and L. Chang, "Defects in m-Plane ZnO Epitaxial Films Grown on (112) LaAlO3 Substrate", J. Vac. Sci. Technol. A, 29, 031001 (2011).
[83] P. Vennegues, J. M. Chauveau, Z. Bougrioua, T. Zhu, D. Martin and N. Grandjean, "On the origin of basal stacking faults in nonpolar wurtzite films epitaxially grown on sapphire substrates", J. Appl. Phys., 112, 113518 (2012).
[84] T.-H. Huang, W.-H. Lin, J.-J. Wu, M. M. C. Chou, T. Yan and L. Chang, "Microstructure Characterization of Nonpolar ZnO and Zn1-xMgxO Epilayers Grown on (100) r-LiAlO2 by Chemical Vapor Deposition", ECS-Transcations, 45, 63 (2012).
[85] M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke and R. Sauer, "Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide", Phys. Rev. B, 77, 125215 (2008).
[86] A. N. Mariano and R. E. Hanneman, "Crystallographic Polarity of ZnO Crystals", J. Appl. Phys., 34, 384 (1963).
[87] S. C. Han, J. K. Kim, J. Y. Kim, K. K. Kim, H. Tampo, S. Niki and J. M. Lee, "Formation of Hexagonal Pyramids and Pits on V-/VI-Polar and III-/II-Polar GaN/ZnO Surfaces by Wet Etching", J. Electrochem. Soc., 157, D60 (2010).
[88] K. Ellmer, A. Klein and B. Rech, "Transparent Conductive Zinc Oxide-Basics and Applications in Thin Film Solar Cells", Springer, Berlin, 380-381 (2008).
[89] S. Yamabi and H. Imai, "Growth Conditions for Wurtzite ZInc Oxide Films in Aqueous Solutions", J. Mater. Chem., 12, 3773 (2002).
[90] Y. Xu, H. Xu, H. Li, J. Xia, C. Liu and L. Liu, "Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO", J. Alloy Compd., 509, 3286 (2011).
[91] J. B. Zhong, J. Z. Li, X. Y. He, J. Zeng, Y. Lu, W. Hu and K. Lin, "Improved photocatalytic performance of Pd-doped ZnO", Curr. Appl. Phys., 12, 998 (2012).
[92] N. Kislov, J. Lahiri, H. Verma, D. Y. Goswami, E. Stefanakos and M. Batzill, "Photocatalytic Degradation of Methyl Orange over Single Crystalline ZnO: Orientation Dependence of Photoactivity and Photostability of ZnO", Langmuir, 25, 3310 (2009).
[93] J. Q. Yuan, E. S. G. Choo, X. S. Tang, Y. Sheng, J. Ding and J. M. Xue, "Synthesis of ZnO-Pt nanoflowers and their photocatalytic applications", Nanotechnology, 21,185606 (2010).
[94] Y. A. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen and W. J. Yu, "Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance", Nanotechnology, 21, 285501 (2010).
[95] W. Xie, Y. Z. Li, W. Sun, J. C. Huang, H. Xie and X. J. Zhao, "Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability", J. Photoch. Photobio. A, 216, 149 (2010).
[96] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan and H. Shen, "Realization of Band Gap Above 5.0 eV in Metastable Cubic-phase MgxZn1-xO Alloy Films", Appl. Phys. Lett., 80, 1529 (2002).
[97] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, "MgxZn1-xO as a II-VI Widegap Semiconductor Alloy", Appl. Phys. Lett., 72, 2466 (1998).
[98] W. I. Park, G. C. Yi and H. M. Jang, "Metalorganic Vapor-phase Epitaxial Growth and Photoluminescent Properties of Zn1-xMgxO(0 x 0.49) Thin Films", Appl. Phys. Lett., 79, 2022 (2001).
[99] W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute and H. Shen, "Compositionally-tuned Epitaxial Cubic MgxZn1-xO on Si(100) for Deep Ultraviolet Photodetectors", Appl. Phys. Lett., 82, 3424 (2003).
[100] A. Ashrafi and Y. Segawa, "Determination of Mg Composition in MgxZn1-xO Alloy: Validity of Vegard's Law", J. Vac. Sci. Technol. B, 23, 2030 (2005).
[101] M. Yano, K. Hashimoto, K. Fujimoto, K. Koike, S. Sasa, M. Inoue, Y. Uetsuji, T. Ohnishi and K. Inaba, "Polarization-induced Two-dimensional Electron Gas at Zn1-xMgxO/ZnO Heterointerface", J. Cryst. Growth, 301, 353 (2007).
[102] B. Q. Cao, W. P. Cai and H. B. Zeng, "Temperature-dependent Shifts of Three Emission Bands for ZnO Nanoneedle Arrays", Appl. Phys. Lett., 88, 161101 (2006).
[103] M. Trunk, V. Venkatachalapathy, A. Galeckas and A. Y. Kuznetsov, "Deep Level Related Photoluminescence in ZnMgO", Appl. Phys. Lett., 97, 211901 (2010).
[104] Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen and K.-H. Chen, "Structural and Optical Properties of Single Crystal Zn1-xMgxO Nanorods - Experimental and Theoretical Studies", J. Appl. Phys., 101, 033502 (2007).
[105] A. Ashrafi, "Exciton Localization in Inhomogeneously Broadened ZnO/MgxZn1-xO Quantum Wells", J. Appl. Phys., 107, 123527 (2010).
[106] D. Gerthsen, D. Litvinov, T. Gruber, C. Kirchner and A. Waag, "Origin and Consequences of a High Stacking Fault Density in Epitaxial ZnO Layers", Appl. Phys. Lett., 81, 3972 (2002).
[107] Y. Yan, G. M. Dalpian, M. M. Al-Jassim and S.-H. Wei, "Energetics and electronic structure of stacking faults in ZnO", Phys. Rev. B, 70, 193206 (2004).
[108] C. Stampfl and C. G. Van de Walle, "Energetics and Electronic Structure of Stacking Faults in AlN, GaN, and InN", Phys. Rev. B, 57, R15052 (1998).
[109] J. Lähnemann, O. Brandt, U. Jahn, C. Pfüller, C. Roder, P. Dogan, F. Grosse, A. Belabbes, F. Bechstedt, A. Trampert and L. Geelhaar, "Direct Experimental Determination of the Spontaneous Polarization of GaN", Phys. Rev. B, 86, 081302 (2012).
[110] M. Valtiner, X. Torrelles, A. Pareek, S. Borodin, H. Gies and G. Grundmeier, "In-situ Study of the Polar ZnO(0001)-Zn Surface in Alkaline Electrolytes", J. Phys. Chem. C, 114, 15440 (2010).
[111] V. Subramanian, E. Wolf and P. V. Kamat, "Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?", J. Phys. Chem. B, 105, 11439 (2001).
[112] I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophytides and P. Falaras, "Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation", J. Catal., 220, 127 (2003).
[113] Q. Zhao, M. Li, J. Chu, T. Jiang and H. Yin, "Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange", Appl. Surf. Sci., 255, 3773 (2009).
[114] W. Li, D. Li, Y. Lin, P. Wang, W. Chen, X. Fu and Y. Shao, "Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2", J. Phys. Chem. C, 116s, 3552 (2012).
[115] V. Subramanian, E. E. Wolf and P. V. Kamat, "Green Emission to Probe Photoinduced Charging Events in ZnO-Au Nanoparticles. Charge Distribution and Fermi-level Equilibration", J. Phys. Chem. B, 107, 7479 (2003).
[116] J. W. Chiou, "Correlation between Elecronic Structures and Photocatalytic Activities of Nanocrystalline-(Au, Ag, and Pt) Particles on the Surface of ZnO Nanorods", J. Phys. Chem. C, 265, 1150 (2011).
[117] D. E. Eastman, "Photoelectric Work Functions of Transition, Rare-earth, and Noble Metals", Phys. Rev. B, 2, 1(1970).
[118] R. Romero, M. C. Lopez, D. Leinen, F. Martin and J. R. Ramos-Barrado, "Electrical properties of the n-ZnO/c-Si heterojunction prepared by chemical spray pyrolysis", Mater. Sci. Eng. B-Adv., 110, 87 (2004).
[119] H. Moormann, D. Kohl and G. Heiland, "Work Function and Band Bending on Clean Cleaved Zinc-Oxide Surfaces", Surf. Sci., 80, 261 (1979).
[120] H. Qian, M. Zhu, Z. Wu and R. Jin, "Quantum Sized Gold Nanoclusters with Atomic Precision", Accounts Chem. Res., 45, 1470 (2012).
[121] R. J. C. Batista, M. S. C. Mazzoni and H. Chacham, "First-principles investigation of electrochemical properties of gold nanoparticles", Nanotechnology, 21, 065705 (2010).
[122] K. L. Choy, "Chemical Vapour Deposition of Coatings", Prog. Mater. Sci., 48, 57 (2003).
[123] J. J. Wu and C. H. Tseng, "Photocatalytic properties of nc-Au/ZnO nanorod composites", Appl. Catal. B-Environ., 66, 51 (2006).
[124] H. Demers, N. Poirier-Demers, A. R. Couture, D. Joly, M. Guilmain, N. de Jonge and D. Drouin, "Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software", Scanning, 33, 135 (2011).
[125] B. Fultz and J. M. Howe, "Transmission Electron Microscopy and Diffractometry of Materials.", Springer-Verlag, New York, 2001.
[126] J. M. Zuo and J. C. Mabon, "Web-based Electron Microscopy Application Software: Web-EMAPS", Microsc. Microanal., 10, 1000, URL: http://emaps.mrl.uiuc.edu/ (2004).
[127] D. B. Williams and C. C. B., "Transmission Electron Microscopy ― Basics Diffraction Imaging Spectrometry", Plenum Press, New York, p143, p361 (1996).
[128] W. Melitz, J. Shen, A. C. Kummel and S. Lee, "Kelvin Probe Force Microscopy and its Application", Surf. Sci. Rep., 66, 1 (2011).
[129] A. Ulman, "Characterization of Organic Thin Films", Momentum Press, New York, p113 (2010).
[130] V. Palermo, M. Palma and P. Samori, "Electronic characterization of organic thin films by Kelvin probe force microscopy", Adv. Mater., 18, 145 (2006).
[131] C. Sommerhalter, T. W. Matthes, T. Glatzel, A. Jager-Waldau and M. C. Lux-Steiner, "High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy", Appl. Phys. Lett., 75, 286 (1999).
[132] W.-H. Lin, H. Saito, T. Nemoto, H. Kurata, M. M. C. Chou, S. Isoda and J.-J. Wu, "Photoassisted Scanning Tunneling Microscopy Investigation on the ZnO(0001)-Zn Surface Treated by Alkaline Solution", J. Phys. Chem. C, 116, 10664 (2012).
[133] N. Ikeo, Y. Iijima, N. Niimura, M. Sigematsu, T. Tazawa, S. Matsumoto, K. Kojima and Y. Nagasawa, "Handbook of X-ray Photoelectron Spectroscopy", JEOL Ltd., Japan, 180-197 (1991).
[134] H. T. Ng, B. Chen, J. Li, J. E. Han, M. Meyyappan, J. Wu, S. X. Li and E. E. Haller, "Optical Properties of Single-crystalline ZnO Nanowires on m-Sapphire", Appl. Phys. Lett., 82, 2023 (2003).
[135] T.-Y. Liu,"Transmission Electron Microscopy Studies of GaN/r-LiAlO2 Heterostructures", PhD Thesis, Humboldt University, 30-37 (2004).
[136] D. W. Hamby, D. A. Lucca, M. J. Klopfstein and G. Cantwell, "Temperature dependent exciton photoluminescence of bulk ZnO", J. Appl. Phys., 93, 3214 (2003).
[137] Y. S. Nam, S. W. Lee, K. S. Baek, S. K. Chang, J. H. Song, S. K. Han, S. K. Hong and T. Yao, "Anisotropic Optical Properties of Free and Bound Excitons in Highly Strained A-Plane ZnO Investigated with Polarized Photoreflectance and Photoluminescence Spectroscopy", Appl. Phys. Lett., 92, 201907 (2008).
[138] J. S. Park, T. Goto, S. K. Hong, S. H. Lee, J. W. Lee, T. Minegishi, S. H. Park, J. H. Chang, D. C. Oh, J. Y. Lee and T. Yao, "Structural and Optical Investigations of Periodically Polarity Inverted ZnO Heterostructures on (0001) Al2O3", Appl. Phys. Lett., 94, 141904 (2009).
[139] W.-H. Lin, U. Jahn, H. T. Grahn, L. Chang, M. M. C. Chou and J.-J. Wu, "Spectral and Spatial Luminescence Distribution of m-Plane ZnO Epitaxial Films Containing Stacking Faults: A Cathodoluminescence Study", Appl. Phys. Express, 6, 061101 (2013).
[140] Y. T. Rebane, Y. G. Shreter and M. Albrecht, "Stacking Faults as Quantum Wells for Excitons in Wurtzite GaN", Phys. Status Solidi A, 164, 141 (1997).
[141] B. Sieber, A. Addad, S. Szunerits and R. Boukherroub, "Stacking Faults-Induced Quenching of the UV Luminescence in ZnO", J. Phys. Chem. Lett., 1, 3033 (2010).
[142] N. L. Marana, V. M. Longo, E. Longo, J. B. L. Martins and J. R. Sambrano, "Electronic and Structural Properties of the (10-10) and (11-20) ZnO Surfaces", J. Phys. Chem. A, 112, 8958 (2008).
[143] M. M. C. Chou, L. W. Chang, H. Y. Chung, T. H. Huang, J. J. Wu and C. W. Chen, "Growth and Characterization ofNnonpolar ZnO (10-10) Epitaxial Film on r-LiAlO2 Substrate by Chemical Vapor Deposition", J. Cryst. Growth, 308, 412 (2007).
[144] L. T. Romano, J. E. Northrup and M. A. Okeefe, "Inversion Domains in GaN Grown on Sapphire", Appl. Phys. Lett., 69, 2394 (1996).
[145] Y. Z. Liu, H. T. Yuan, Z. Q. Zeng, X. L. Du, X. D. Han, Q. K. Xue and Z. Zhang, "Inversion Domain Boundary in a ZnO Film", Phil. Mag. Lett., 87, 687 (2007).
[146] L. T. Romano, J. E. Northrup, A. J. Ptak and T. H. Myers, "Faceted Inversion Domain Boundary in GaN Films Doped with Mg", Appl. Phys. Lett., 77, 2479 (2000).
[147] S. Pezzagna, P. Vennegues, N. Grandjean and J. Massies, "Polarity Inversion of GaN(0001) by a High Mg Doping", J. Cryst. Growth, 269, 249 (2004).
[148] P. D. Han, Z. G. Wang, X. F. Duan and Z. Zhang, "Polarity Dependence of Hexagonal GaN Films on Two Opposite C-Faces of Al2O3 Substrate", Appl. Phys. Lett., 78, 3974 (2001).
[149] Y. Wang, Q. Y. Xu, X. L. Du, Z. X. Mei, Z. Q. Zeng, Q. K. Xue and Z. Zhang, "Determination of the Polarity of ZnO Thin Films by Electron Energy-loss Spectroscopy", Phys. Lett. A, 320, 322 (2004).
[150] T. Ishii, M. Mukaida, T. Nishihara, S. Hayashi and M. Shinohara, "Identification of Surface Atoms of LiGaO2(001) Substrate for Hexagonal GaN Film by Coaxial Impact Collision Ion Scattering Spectroscopy", Jpn. J. Appl. Phys., 37, L672 (1998).
[151] H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu and W. P. Cai, "Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls", Adv. Funct. Mater., 20, 561 (2010).
[152] M. Haruta, H. Kurata, H. Komatsu, Y. Shimakawa and S. Isoda, "Effects of Electron Channeling in HAADF-STEM Intensity in La2CuSnO6", Ultramicroscopy, 109, 361 (2009).
[153] M. Bohmisch, F. Burmeister, A. Rettenberger, J. Zimmermann, J. Boneberg and P. Leiderer, "Atomic Force Microscope Based Kelvin Measurements: Application to an Electrochemical Reaction", J. Phys. Chem. B, 101, 10162 (1997).
[154] R. K. Swank, "Surface Properties of II-VI Compounds", Phys. Rev., 153, 844 (1967).
[155] E. V. Kortunova, N. G. Nikolaeva, P. P. Chvanski, V. V. Maltsev, E. A. Volkova, E. V. Koporulina, N. I. Leonyuk and T. F. Kuech, "Hydrothermal Synthesis of Improved ZnO Crystals for Epitaxial Growth of GaN Thin Films", J. Mater. Sci., 43, 2336 (2008).
[156] G. Kresse, O. Dulub and U. Diebold, "Competing Stabilization Mechanism for the Polar ZnO(0001)-Zn Surface", Phys. Rev. B, 68, 245409 (2003).
[157] A. Wander and N. M. Harrison, "The Stability of Polar Oxide Surfaces: The interaction of H2O with ZnO(0001) and ZnO(000-1)", J. Chem. Phys., 115, 2312 (2001).
[158] V. T. Liveri, "Controlled Synthesis of Nanoparticles in Microheterogeneous Systems", Springer, New York, 107 (2006).
[159] J. Zúñiga-Pérez, V. Muñoz-Sanjosé, E. Palacios-Lidón and J. Colchero, "Polarity Effects on ZnO Films Grown along the Nonpolar [1120] Direction", Phys. Rev. Lett., 95, 226105 (2005).
[160] J. Chen, J. F. Wang, H. Wang, J. J. Zhu, S. M. Zhang, D. G. Zhao, D. S. Jiang, H. Yang, U. Jahn and K. H. Ploog, "Measurement of Threading Dislocation Densities in GaN by Wet Chemical Etching", Semicond. Sci. Tech., 21, 1229 (2006).
[161] W. J. Li, E. W. Shi, W. Z. Zhong and Z. W. Yin, "Growth Mechanism and Growth Habit of Oxide Crystals", J. Cryst. Growth, 203, 186 (1999).
[162] L. Vayssieres, K. Keis, A. Hagfeldt and S. E. Lindquist, "Three-dimensional Array of Highly Oriented Crystalline ZnO Microtubes", Chem. Mater., 13, 4395 (2001).
[163] O. Dulub, L. A. Boatner and U. Diebold, "STM Study of the Geometric and Electronic Structure of ZnO(0001)-Zn, (000-1)-O, (10-10), and (11-20) Surfaces", Surf. Sci., 519, 201 (2002).
[164] C. Hariharan, "Photocatalytic Degradation of Organic Contaminants in Water by ZnO Nanoparticles: Revisited", Appl. Catal. A-Gen., 304, 55 (2006).
[165] J.-Y. Yu, T.-H. Huang, L. Chang, Y.-H. Liao, M. M. C. Chou and D. Gan, "Growth Behavior of m-Plane ZnO Epilayer on (100) LiGaO2 by Chemical Vapor Deposition", J. Electrochem. Soc., 158, H1166 (2011).
[166] R. A. Alberty, ed., Physical Chemistry, 7th edn., Wiley, 1987.
[167] J. A. Chaney and P. E. Pehrsson, "Work function changes and surface chemistry of oxygen, hydrogen, and carbon on indium tin oxide", Appl. Surf. Sci., 180, 214 (2001).
[168] L. Kronik and Y. Shapira, "Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering", Surf. Interface Anal., 31,954 (2001).
[169] W. H. Koppenol, D. M. Stanbury and P. L. Bounds, "Electrode potentials of partially reduced oxygen species, from dioxygen to water", Free Radcal Bio. Med., 49, 317 (2010).
[170] D. M. Chipman, "Eelectron-affinity of Hydroxyl Radical", J. Chem. Phys., 84, 1677 (1986).