| 研究生: |
沈以辰 Shen, Yi-Chen |
|---|---|
| 論文名稱: |
偶氮雙鍵材料摻雜膽固醇液晶微球在光渦流光鉗作用下之可光調控軌道運動 Phototunable orbital motion of azo-material doped cholesteric liquid crystal microdroplets under optical vortex tweezers |
| 指導教授: |
李佳榮
Lee, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 光渦流光鉗 、自旋角動量 、軌道角動量 、膽固醇液晶 、偶氮染料 、手性偶氮染料 |
| 外文關鍵詞: | optical vortex tweezers, spin angular momentum, orbital angular momentum, cholesteric liquid crystal, azo-dye, chiral azo-dye |
| 相關次數: | 點閱:128 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要使用具有自旋角動量與軌道角動量之渦流光光鉗光束去抓取具有布拉格洋蔥狀結構之膽固醇液晶(CLC)微球,並研究其在強度似甜甜圈狀的渦流光斑內進行的軌道運動特性。除此外,本論文亦研究摻有偶氮染料與手性偶氮染料之CLC微球在照射紫外光前後的軌道運動變化與光致染料行同素異構化機制造成結構上改變之間的關係,以研究CLC微球軌道運動之外部光控效果。
第一部分實驗結果顯示,渦流光鉗之圓偏振旋性若與CLC微球旋性相同(相反),則光鉗光子會發生反射(穿透),因布拉格反射會使OAM反旋向,使得微球從光子獲得較多的軌道角動量轉移,以至於有較快(慢)的軌道轉速。
第二部分實驗結果顯示,在紫外光照射偶氮染料摻雜CLC微球下,染料會行transcis同素異構化而使cis態濃度遞增,這使得CLC等溫相變成各向同性,如此會使微球之軌道運動轉速降低。主要原因來自等溫相變前CLC微球的布拉格洋蔥狀結構功能上有類似於q=1的q-plate效果,此效果會轉移給微球一個與入射光鉗光子旋性相反的額外OAM (lћ=2qћ=2ћ),而照光後CLC變成各向同性態後微球q-plate效應消失,使轉速微幅上升。但在從CLC態轉到各向同性態的過程中,有轉速大量下降的情形產生,原因是照光之下微球布拉格洋蔥狀結構被破壞而變成螺旋結構扭曲變形,由於CLC微球螺旋結構扭曲變形造成入射光鉗入射時被微球大角度散射機率大增,這使得散射光轉移給微球的有效OAM(投影在轉軸方向)變小許多,也因此讓此階段的微球轉速大量下降,週期大量變長,這種情況無論是在左旋或右旋的微球上皆是如此。
第三部分實驗結果顯示,在紫外光照射手性偶氮染料摻雜CLC微球時,染料會行transcis同素異構化而使cis態濃度遞增,這會引致CLC微球之HTP下降(螺距變長)而使反射波段紅移。除此之外,當微球之CLC反射波段紅移後包含(不包含)入射光鉗波長λOVT(660 nm),也會因發生(不發生)布拉格反射而導致微球獲得的OAM較多(較少),如此微球之軌道轉速會較快(較慢),旋轉週期會較短(較長)。
The thesis used the optical vortex tweezers (OVTs) with spin angular momentum (SAM) and orbital angular momentum (OAM) to trap and induce the orbital motion of the cholesteric liquid crystal (CLC) microdroplets. The relationship between the orbital motion of CLC microdroplets doped with azo and azo-chiral dyes before and after ultraviolet light irradiation is also studied. The phase (pitch) change in CLC microdroplets induced by photoisomerization of the UV-excited azo dyes (azo-chiral dyes) leads to the light-controlling function of the orbital motion of the CLC microdroplets.
1. D. S. Miller, X. Wang, and N. L. Abbott, “Design of functional materials based on liquid crystalline droplets,” Chem. Mater. 26, 496–506 (2013).
2. X. Wang, D. S. Miller, J. J. de Pablo, and N. L. Abbott, “Reversible switching of liquid crystalline order permits synthesis of homogeneous populations of dipolar patchy microparticles,” Adv. Funct. Mater. 24, 6219–6226 (2014).
3. E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly,” Nano Lett. 6, 2243–2248 (2006).
4. J. Zou, J. Fang, “Director configuration of liquid-crystal droplets encapsulated by polyelectrolytes,” Langmuir 26, 7025–7028 (2010).
5. J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets,” Langmuir 25, 9016–9024 (2009).
6. R. J. Carlton, Y. M. Zayas-Gonzalez, U. Manna, D. M. Lynn, and N. L. Abbott, “Surfactant-Induced Ordering and Wetting Transitions of Droplets of Thermotropic Liquid Crystals “Caged” Inside Partially Filled Polymeric Capsules,” Langmuir 30 14944–14953 (2014).
7. D. Sec, T. Porenta, M. Ravnik, and S. Zumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
8. F. Xu and P. P. Crooker, “Chiral nematic droplets with parallel surface anchoring,” Phys. Rev. E 56, 6853–6860 (1997).
9. M. Heppenstall‐Butler, A.‐M. Williamson, and E. M. Terentjev, “Selection of droplet size and the stability of nematic emulsions,” Liq. Cryst. 32, 77–84 (2005).
10. O. O. Prishchepa, V. Ya. Zyryanov, A. P. Gardymova, and V. F. Shabanov, “Optical textures and orientational structures of nematic and cholesteric droplets with heterogeneous boundary conditions,” Mole. Cryst. Liq. Cryst. 489, 84–93 (2008).
11. V. Ya. Zyryanov, M. N. Krakhalev, O. O. Prishchepa, and A. V. Shabanov, “Inverse regime of ionic modification of surface anchoring in nematic droplets,” JETP Letters 88, 597–601 (2008).
12. J. A. Moreno-Razo, E. J. Sambriski, N. L. Abbott, J. P. Hernandez-Ortiz, and J. J. de Pablov, “Liquid-crystal-mediated self-assembly at nanodroplet interfaces,” Nature 48, 86–89 (2012).
13. O. O. Prischepa, A. V. Shabanov, and V. Ya Zyryanov, “Director configurations within nematic droplets doped by lecithin,” Mole. Cryst. Liq. Cryst. 438, 141–150 (2005).
14. S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Adv. Funct. Mater. 19, 2260–2265 (2009).
15. I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332, 1297–1300 (2011).
16. V. J. Alino, J. Pang, and K.-L. Yang, “Liquid crystal droplets as a hosting and sensing platform for developing immunoassays,” Langmuir 27, 11784–11789 (2011).
17. X. Niu, D. Luo, R. Chen, F. Wang, X. Sun, H. Dai, “Optical biosensor based on liquid crystal droplets for detection of cholic acid,” Opt. Commun. 381, 286–291 (2016).
18. M. Humar, and I. Musevic, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
19. D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
20. P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
21. J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21, 15765–15776 (2013).
22. S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, “Fast optical switching by a laser-manipulated microdroplet of liquid crystal,” Appl. Phys. Lett. 74, 3627–3629 (1999).
23. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82, 4657–4659 (2003).
24. N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, “Control of the molecular alignment inside liquid-crystal droplets by use of laser tweezers,” Small 1, 656–661 (2005).
25. N. Murazawa, S. Juodkazis, and H. Misawa, “Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers,” J. Phys. D: Appl. Phys. 38, 2923–2927 (2005).
26. N. Murazawa, S. Juodkazis, and H. Misawa, “Laser manipulation based on a light-induced molecular reordering,” Opt. Express 14, 2481–2486 (2006).
27. E. Brasselet, N. Murazawa, S. Juodkazis, and H. Misawa, “Statics and dynamics of radial nematic liquid-crystal droplets manipulated by laser tweezers,” Phys. Rev. E 77, 041704 (2008).
28. Y. Yang, P. D. Brimicombe, N. W. Roberts, M. R. Dickinson, M. Osipov, and H. F. Gleeson, “Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap,” Opt. Express 16, 6877–6882 (2008).
29. M. Mosallaeipour, Y. Hatwalne, N. V. Madhusudana, and S. Ananthamurthy, “Laser induced rotation of trapped chiral and achiral nematic droplets,” J. Mod. Opt. 57, 395–399 (2010).
30. J. Hernandez, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Optical manipulation of liquid crystal droplets through holographic polarized tweezers: Magnus effect,” Mol. Cryst. Liq. Cryst. 558, 72–83 (2012).
31. S. Phanphak, A. Pattanaporkratana, J. Limtrakul, and N. Chattham, “Precession mechanism of nematic liquid crystal droplets under low power optical tweezers,” Ferroelectrics 468,114–122 (2014).
32. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
33. M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, “Astigmatic laser mode convertors and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
34. A. Cerjan and C. Cerjan, “Orbital angular momentum of Laguerre–Gaussian beams beyond the paraxial approximation,” OSA Proc. 28, 2253–2260 (2011).
35. L. Aolita and S. P. Walborn, “Quantum communication without alignment using multiple-qubit single-photon states,” Phys. Rev. Lett. 98, 100501 (2007).
36. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97, 163903 (2006).
37. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinszteindunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase sigularity,” Phys. Rev. Lett. 75, 826–829 (1995).
38. M. J. Padgett, and L. Allen, “The poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121, 36–40 (1995).
39. A. T. O'Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
40. V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
41. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
42. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” P Natl. Acad. Sci. USA 94, 4853–4860 (1997).
43. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quant. 6, 841–856 (2000).
44. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
45. S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda, and M. Prentiss, “Inexpensive optical tweezers for undergraduate laboratories,” Am. J. Phys. 67, 26–35 (1999).
46. 陳永昇, “光鉗的製作及其特性的了解,” 國立成功大學物理研究所碩士論文, 5–14 (民國90年7月).
47. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350
48. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
49. Z. Bouchal, V. Kollarova, P. Zemanek, and T. Cizmar, “Orbital angular momentum of mixed vortex beams,” Proc. of SPIE 6609, 660901–660908 (2007).
50. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67–71 (2000).
51. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Phys. Rev. Lett. 88, 221102 (2006).
52. L. Marrucci, E. Karimi, S. Slussarenko, B Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital optical angular momentum conversion in liquid crystal “q-plate”: classical and quantum applications,” Mol. Cryst. Liq. Cryst. 561, 48–56 (2012).
53. L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Cryst. Liq. Cryst. 488, 148–162 (2008).
54. L. Allen, M. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
55. M. Humar1 and I. Musevic, “3D microlasers from self-assembledcholesteric liquid-crystal microdroplets” OPTICS EXPRESS /Vol. 18, No. 26 (2010)
56. H. Bouas-Laurent and H. DÜRR, “Organic photochromism” Pure Appl. Chem. 73, 148–162 (2001).
57. M. Humar1 and I. Musevic “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets” Optical Society of America, Vol. 18, Issue 26, pp. 26995-27003 (2010)
58. Georgiy Tkachenko1 and Etienne Brasselet1 “Helicity-dependent three-dimensional optical trapping of chiral microparticles” Opt. Commun.5491,2-4 (2014)
59. Alison M. Yao and Miles J. Padgett“Orbital angular momentum: origins,behavior and applications” Optical Society of America. Doc. ID 136333,177-180(2011)
60. Etienne Brasselet “Optical Vortices from Liquid Crystal Droplets” PHYSICAL REVIEW LETTERS.103.103903,(2009)
61. Mushegh Rafayelyan and Etienne Brasselet “Bragg-Berry mirrors: reflective broadband q-plates” Optics Letters /Vol. 41, No. 17 ,(2016)
62. Mushegh Rafayelyan, Georgiy Tkachenko, Etienne Brasselet “Reflective Spin-Orbit Geometric Phase from ChiralAnisotropic Optical Media” PHYSICAL REVIEW LETTERS,116.253902,(2016)
63. A. Yu. Okulov “Phase-conjugation of the isolated optical vortex using flat surfaces” J. Opt. Soc. Am. B/Vol. 27, No. 11/(2010)
64. A Yu Okulov “Angular momentum of photons and phase conjugation” J. Phys. B: At. Mol. Opt. Phys. 41 (2008)
65. 賴俊延,“可光調控染料摻雜液晶微球在光渦流光鉗下之軌道運動,” 國立成功大學物理研究所碩士論文, 50–54 (民國106年7月).
66. Michel Mitov “Cholesteric Liquid Crystals with a Broad Light Refl ection Band” Adv. Mater.,DOI:10.1002/adma.201202913, 6260–6276 (2012)
67. W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang “Bragg reflection from cholesteric liquid crystals” PhysRevE. VOLUME 51, NUMBER 2,51.1191,(1995)
68. Deng‐Ke Yangand Shin‐Tson Wu “Fundamentals of Liquid Crystal Devices, Second Edition” 2015 John Wiley & Sons, Ltd. CH.1~CH3 ,(2014)
69. Jia-De Lin, Meng-Hung Hsieh, Guan-Jhong Wei, Ting-Shan Mo, Shuan-Yu Huang and Chia-Rong Lee “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant” OPTICS EXPRESS Vol. 21, No. 13 15765 (2013)
70. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg and H. Rubinsztein-Dunlop “Optical alignment and spinning of laser-trappedmicroscopic particles” Nature 394, 348–350 (1998)
71. Carlo Manzo , Domenico Paparo , Lorenzo Marrucci and Istvan Jánossy “Total Optical Torque and Angular Momentum Conservation in Dye-Doped Liquid Crystal Droplets Spun by Circularly Polarized Light” Mol. Cryst. Liq. Cryst., Vol. 454, pp. 101/[503]–110/[512] (2006)
72. Charles de Nobriga “Linear and Nonlinear Optics in Coupled Waveguide Arrays" chapter1 page 11 Figure 1-2, published by University of Bath (2012)
校內:2021-07-30公開