簡易檢索 / 詳目顯示

研究生: 蔡和勳
Tsai, Ho-Hsun
論文名稱: 微型感測器陣列之研製
Development of a micro-sensor array
指導教授: 王逸君
Wang, Yi-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: PVDF壓電薄膜空蝕汽泡電荷放大器準分子雷射微細加工技術微感測器陣列
外文關鍵詞: PVDF piezoelectric film, Charge amplifier, Micro-sensor array, Cavitation bubble, Excimer laser micro-machining technique
相關次數: 點閱:92下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在發展微型壓力感測器陣列之設計及製作技術。首先我們在厚25微米雙面鍍鋁電極的PVDF壓電薄膜上,利用準分子雷射微細加工技術,製作了具有11個感測單元,感測面積為0.4×0.4 mm2的微型壓力感測器陣列。同時設計了一對一的電荷放大器,並以筆心斷裂法逐一校正感測器。感測器的頻寬則以氣體震波管來測定。最後將感測器陣列放入水槽中,並透過擷取控制系統和高速攝影機,量測單一空蝕汽泡在固體表面附近崩裂時所產生的衝擊訊號。

    This study aims at building up the techniques for designing and fabricating an array of micro-sensors of pressure. The sensor array is fabricated directly on a 25μm thick aluminum-metalized polarized PVDF film by means of an excimer laser micro-machining technique. Eleven sensing units each of active area of 0.4×0.4 mm2 are constructed and are accompanied with one-to-one well-designed charge amplifiers. The sensor array is calibrated by the method of pencil lead breaking. The bandwidth of the sensor is determined using a gas dynamic shock tube. Equipped with a high speed CCD camera and a synchronization trigger system, the sensor array is then used to measure the impulsive signal generated by the collapse of a cavitation bubble near a solid boundary.

    摘 要 I Abstract II 誌 謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1-1 前言 1 1-1-1 空蝕現象 1 1-1-2 侵蝕機制 2 1-2 文獻探討 5 1-2-1 空蝕汽泡的產生方式 5 1-2-2 γ值的影響 6 1-2-3 γ=1.2 7 1-2-4 γ=0.9 8 1-2-5 γ=0.4~0.3 9 1-2-6 第二次崩裂 10 1-3 研究動機及目的 14 第二章 實驗架構及擷取系統 16 2-1 單一空蝕汽泡量測架構 16 2-2 筆心斷裂校正架構 18 2-3 氣體震波管測試架構 20 2-4 實驗設備 22 2-4-1 汽泡產生器(electrohydraulic bubble generator) 22 2-4-2 水槽及電極控制架 23 2-4-3 高速攝影機(high speed camera) 24 2-4-4 訊號擷取卡(data acquisition card) 25 2-4-5 系統同步控制卡(synchronization trigger card) 25 2-4-6 光偵測器(photo detector) 26 第三章 壓力感測器陣列與緩衝電路 29 3-1 壓電薄膜特性 29 3-2 感測陣列設計及製作 31 3-2-1 感測單元加工 31 3-2-2 感測陣列配置 37 3-2-3 感測器封裝 39 3-3 緩衝電路 41 3-3-1 緩衝電路原理 41 3-3-2 電荷放大器 44 3-3-3 電路測試 47 3-4 感測器測試及校正 48 3-4-1 震波管測試 48 3-4-2 感測陣列校正 50 第四章 空蝕汽泡壓力場量測 54 4-1 環型汽泡控制 54 4-1-1 γ值控制 54 4-1-2 環形汽泡觀察 55 4-1-3 感測器定位 56 4-2 衝擊壓力量測 60 4-2-1 γ=0.46 60 4-2-2 γ=0.68 66 4-3 小討論 68 第五章 結果與討論 69 5-1 PVDF感測陣列製作 69 5-2 緩衝電路設計 70 第六章 結論及建議 72 參考文獻 74 附錄 77 附錄一 77 附錄二 80 自述 92

    [1] E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, The final stage of the collapse of a cavitation bubble close to a rigid boundary, Physics of Fluids, vol. 14(1), p 85-92, (2002)

    [2] O. Lindau, and W. Lauterborn, Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall, Journal of Fluid Mechanics, vol. 479, pp. 327-348, (2003)
    [3] A. Philipp, and W. Lauterborn, Cavitation erosion by single laser-produced bubbles, Journal of Fluid Mechanics, vol. 361, pp. 75-116, (1998)
    [4] A. Shima, K. Takayama, Y. Tomita, and N. Ohsawa, Mechanism of Impact Pressure Generation from Spark-Generated Bubble Collapse Near a Wall, AIAA Journal, vol. 21(1), pp. 55-59, (1983)
    [5] Y. Tomita, and A. Shima, Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse, Journal of Fluid Mechanics, vol. 169, pp. 535-564, (1986)
    [6] R. P. Tong, W. P. Schiffers, S. J. Shaw, J. R. Blake and D. C. Emmony, Role of 'splashing' in the collapse of a laser-generated cavity near a rigid boundary, Journal of Fluid Mechanics, vol. 380, pp. 339-361, (1999)
    [7] Y.-C. Wang, Y.-W. Chen, Application of piezoelectric PVDF film to the measurement of impulsive forces generated by cavitation bubble collapse near a solid boundary, Exp. Therm. Fluid Sci, (2007), DIO:10.1016/j.expthermflusci.2007.05.003
    [8] Y.-C. Wang, C.-H. Huang, Y.-C. Lee, H.-H. Tsai, Development of a PVDF sensor array for measurement of the impulsive pressure generated by cavitation bubble collapse, Experiments in Fluids, (2006), DIO:10.1007/s00348-006-0135-8
    [9] S. J. Shaw, W. P. Schiffers, T. P. Gentry, and D. C. Emmony, The interaction of a laser-generated cavity with a solid boundary, J. of Acoust. Soc. Am., vol. 107, No. 6, pp. 3065-3072, (1999)
    [10] M. Harrison, D. Taylor, M. Basin, An experiment study of single bubble cavitation noise, J. of Acoust. Soc. Am., vol. 24, No. 6, pp. 776-782, (1952)
    [11] L. F. Brown, Design considerations for piezoelectric polymer ultrasound transducers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 47, No. 6, pp. 1377-1396, (2000)
    [12] H. Soyama, A. Lichtarowicz, T. Momma, E. J. Williams, A New Calibration method for dynamically loaded transducers and its application to cavitation impact measurement, Transcation of the ASME, vol. 120, pp. 712-718, (1998)
    [13] 陳郁文, “利用壓電薄膜量測空蝕氣泡對鄰近物體表面所造成之衝擊力”, 國立成功大學機械工程研究所碩士論文, 2001.
    [14] 郭志祥, “水電式汽泡產生器的特性研究”, 國立成功大學機械工程研究所碩士論文, 2003.
    [15] 李世川, “以PVDF壓電感測器陣列探討空蝕汽泡對鄰近物體表面之衝擊機制”, 國立成功大學機械工程研究所碩士論文, 2000.
    [16] 黃清宏, “PVDF壓電陣列感測器之製作、校正及應用”, 國立成功大學機械工程研究所碩士論文, 2004.
    [17] 邱巨霖, “壓電式PVDF水聽器與解析式超音波換能器之研究”, 國立成功大學機械工程研究所碩士論文, 2006.

    下載圖示 校內:2008-08-16公開
    校外:2008-08-16公開
    QR CODE