簡易檢索 / 詳目顯示

研究生: 尤崇智
Yu, Tsung-Chih
論文名稱: 偏極光外差干涉儀於光學非等向性材料特性分析之研究
Polarization Heterodyne Interferometer for the Characterization of Optically Anisotropic Materials
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 132
中文關鍵詞: 方位角錨定能偏光外差干涉儀線性雙折射主軸角度相位延遲扭轉向列型液晶厚度扭轉角
外文關鍵詞: heterodyne interferometer, linear birefringence, principal axis, phase retardation, twisted nematic liquid crystal, cell gap, twist angle, azimuthal anchoring
相關次數: 點閱:169下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中使用共路徑電光調變外差干涉技術發展出一套多功能偏光干涉系統,用以測量光學非等向性材料之各項參數。此系統已成功應用於葡萄糖溶液之濃度量測、線性雙折射材料之二維全域量測、高靈敏扭轉向列型液晶厚度之單點及全場量測、扭轉向列型液晶之單點及全場多參數量測;並以不加外場之方式,成功測量向列型液晶與polyimide配向膜間之強方位角錨定能,本研究以單一架構搭配不同之訊號處理方式,實現了針對光學非等向性材料之多功能多參數單點及全場量測系統。
    在線性雙折射材料之量測上,此系統達成主軸角度及相位延遲量之全場及全域量測,主軸角度及相位延遲量之全場量測標準差分別為0.14度及0.27度。此系統利用電光調變器取代旋轉偏振片的機械式調變方式,改良了強度比率法(total intensity ratio method),達成快速扭轉向列型液晶盒之厚度單點量測,實驗驗證可於兩秒內得到液晶盒之厚度。在同一共路徑外差干涉架構下,使用CCD為光接受器,於一個調變週期內擷取三張積分影像,藉此求出外差干涉訊號之相位分佈,並達到全場量測扭轉向列型液晶層厚度之目的,此高靈敏相位影像偏光系統之扭轉向列型液晶層延遲量(retardation)量測解析度可達0.5 nm。論文中以外差干涉訊號的相位及強度比作為多目標基因演算法中的目標值,演算法將找出最適合的基因(即液晶參數)來對應到所要之目標值,此方法成功量測出扭轉向列型液晶盒的入射液晶導軸方位角、扭轉角以及液晶盒厚度;而以外差訊號之二維相位分佈作為目標值,更可同時求出液晶盒的入射液晶導軸方位角、扭轉角以及液晶盒厚度之二維分佈。論文中更進一步以楔型液晶盒為樣本,量測其扭轉角及厚度分布,進而求出液晶與polyimide之方位角錨定能,此方法毋須外加電場或磁場,待測樣本亦不需符合waveguiding regime之特殊條件。
    藉由光學外差共路徑干涉的量測架構,可降低環境擾動對於訊號的影響,並改善訊噪比(signal-to-noise ratio)。實驗結果確認了此方法用於單點及全場量測線性雙折射材料及扭轉型液晶盒參數的可行性,光學外差式偏光架構對於相位量測具有高度靈敏性,而所得的各參數與設計值十分接近。本系統除了可快速的得到液晶盒厚度之分佈,可用於對於液晶線上製程檢測,亦可穩定的同時量測扭轉向列型液晶的方位角、扭轉角及液晶盒厚及方位角錨定能等參數,對於光學非等向性材料之特性分析提供有力之工具。

    In optical measurement field, heterodyne interferometry technology is an important technique for precise measurements. In this research, a multi-function polariscope with heterodyne-based configuration is developed for the characterization of optical anisotropic materials such as the glucose concentration, the principal axis angle and phase retardation of linear birefringence material (LBM), and parameters of twisted nematic liquid crystal (TNLC) cells.
    For 2-dimensional LBM measurement, the dynamic ranges of the principal axis and phase retardation measurements extend from 0° to 180° and 0° to 360°, respectively. The proposed system not only enables full-range measurements of the slow axis angle to be obtained, but also allows a decision to be made as to whether the principal axis labeled by the manufacturer is the slow axis or the fast axis. The standard deviations of slow axis angle and phase retardation measurements are found to be 0.14° and 0.27°, respectively. The proposed system replaced rotating polarizer with an electro-optic modulator (EOM) to modify total intensity ratio method (TIRM) and showed the capability of high-speed single-point TNLC cell gap measurement. The experimental results confirm that the proposed approaches yield comparable accuracy to the conventional methods, and sufficient intensity signals to determine the cell gap can be obtained in just 2 seconds. In the same optical configuration, a highly phase-sensitive imaging polariscope for the mapping of spatially-distributed cell gap of a TNLC is proposed. The dynamic range of retardation which is around 0.7 μm without ambiguity in the proposing method is also larger than that in the previous reports. By using standard 8-bit gray level charge coupled device (CCD), the experimental results show that the standard deviation of 1.8 nm in the 2-D measurement of cell thickness has been obtained. The retardation resolution of 0.5 nm of the proposed method is also achieved and is better than that of the Stokes parameters determination method with high gray level CCD (16-bit brightness resolution). Furthermore, the intensity ratios and the phases of the detected heterodyne signals are used for the inverse calculation in the LC cell parameters by applying a genetic algorithm (GA) approach. The experimental results show that the average deviation of 0.01 ° and 0.013 μm in the measurement of twist angle and cell thickness have been obtained. The average deviation of 0.23° in the measurement of entrance director angle has also been achieved. Based on phase-sensitive imaging polariscope, the 2-D experimental results show that the 2-D standard deviation of 0.4°, 0.7°, and 0.032 μm for determining the 2-D distributions of azimuth angle, twist angle, and cell thickness have been obtained. A TNLC wedged cell was therefore used as the sample for characterizing the anchoring property of LC and alignment layer. The measured variation curves between real twist and cell gap were used to determine the azimuthal anchoring strength and the anchoring strength of 160 μJ/m2 and 36μJ/m2 between rubbed polyimide (PI) and two different LC materials are obtained.

    中文摘要 II Abstract IV Acknowledgments VI List of Figures IX List of Tables XIV Definition of Symbols XV Chapter 1 Introduction 1 1.1 Review of Linear Birefringence Materials Measurement 1 1.2 Review of Twisted Nematic Liquid Crystal Measurement 3 1.3 Dissertation Preview 6 Chapter 2 Polarization Heterodyne Interferometry8 2.1 Basic Theory of Heterodyne Interference 8 2.2 Modulating Techniques 9 2.3 Electro-Optic Modulation 10 2.4 Liquid Crystal Polarization Modulator 18 Chapter 3 Measurement of Glucose Concentration with LC Modulator 27 3.1 Optical Activity and Circular Birefringence 27 3.2 Measuring System and Methods 31 3.3 Experimental Results 37 Chapter 4 Full-Field and Full-Range Sequential Measurement of Linear Birefringent Materials 42 4.1 Theoretical Analysis 42 4.2 Experimental Setup and Results 47 4.3 Discussions 56 Chapter 5 Cell Gap Measurement of Twisted-Nematic Liquid Crystals 62 5.1 Single Point Measurement with Modified Total Intensity Ratio Methods 62 5.1.1 Basic Theory of Single-Wavelength TIRM 62 5.1.2 Modified Optical Configurations for TIRM 65 5.1.3 Experimental Setup and Results 73 5.2 Phase-Sensitive Two-dimensional TNLC Cell Gap Measurement 78 5.2.1 Implementation of full-field phase-sensitive cell gap measurement 78 5.2.2 Experiment setup and results 84 5.2.3 Discussions 87 Chapter 6 Multiple-Parameter Measurement of Twisted-Nematic Liquid Crystals 88 6.1 Principle of Operation 88 6.2 Genetic Algorithm Model for Extracting TNLC Parameters 91 6.3 Two-Dimensional Multiple Parameters Measurement 94 6.4 Experimental Results and Discussion 103 Chapter 7 Determination of Azimuthal Anchoring Strength In Twisted Nematic Liquid Crystal Cell 111 7.1 Basic Thoery 111 7.2 Experimental Results 115 Chapter 8 Conclusions and Future Works 123 8.1 Conclusions 123 8.2 Future Works 123 References 125 Curriculum Vitae 132 List of publications 133

    1. Aguanno, M.V., Lakestani, F., Whelan, M.P., and Connelly, M.J., "Single pixel carrier based approach for full field laser interferometry using a CMOS-DSP camera", Proc. SPIE 5251, 304-312, 2004.
    2. Akahane, T., Kaneko, H., and Kimura, M., "Novel method of measuring surface torsional anchoring strength of nematic liquid crystals," Jpn. J. Appl. Phys. 35, 4434-4437, 1996.
    3. Akiba, M., Chan, K.P., and Tanno, N., "Real-time, micrometer depth resolved imaging by low-coherence reflectometry and a two-dimensional heterodyne detection technique," Jpn. J. Appl. Phys. Part 2 39, L1194-L1196, 2000.
    4. Barbero, G., Olivero, D., Scaramuzza, N., Strongi, G., and Versace, C., "Influence of the bias-voltage on the anchoring energy for nematic liquid crystals," Phys. Rev. E 69, 021713, 2004.
    5. Berezhna, S.Y., Berezhnyy, I.V., and Takashi, M., "Dynamic photometric imaging polarizer-sample-analyzer polarimeter: instrument for mapping birefringence and optical rotation," J. Opt. Soc. Am. A 18, 666-672, 2001.
    6. Blinov, L.M. and Chigrinov, V.G., Electrooptic Effects in Liquid Crystal Materials, (Springer, New York, 1994.
    7. Bueno, J.M. and Fernando, V.M., "Measurement of the corneal birefringence with a liquid-crystal imaging polariscope," Applied Optics, vol. 41, no.1, pp.116-124, 2002.
    8. Chatterjee, S. and Kumar, Y.P., "Simple technique for the measurement of two-dimensional linear retardation distributions of wave plates with a phase-shifting Nomarski prism," Appl. Opt. 47, 874-882, 2008.
    9. Cheng, H.C. and Lo, Y.L., "The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm, and two thermally modulated intensity," Journal of Lightwave Technology 23, 2158-2168, 2005.
    10. Cheng, H.C. and Lo, Y.L., "Arbitrary strain distribution measurement using a genetic algorithm approach and two fiber Bragg grating intensity spectra," Opt. Comm. 239, 323-332, 2004.
    11. Chou, C. and Teng, H.K, "Linear birefringence measurement with a differential-phase optical heterodyne polarimeter," Jpn. J. Appl. Phys. 41, 3140-3144, 2002.
    12. Clerc, F.L., Collot, L., and Gross, M., "Numerical heterodyne holography with two-dimensional photodetector arrays," Opt. Lett. 25, 716-718, 2000.
    13. Dubois, A., "Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets," J. Opt. Soc. Am. A. Vol. 18, pp. 1972-1979, 2001
    14. Etzel, S.M., Rose, A.H., and Wang, C.M., "Dispersion of the temperature dependence of the retardance in SiO2 and MgF2," Appl. Opt. 39, 5796-5800, 2000.
    15. Faetti, S. and Marianelli, P., "Strong azimuthal anchoring energy at a nematic-polyimide interface," Phys. Rev. E 72, 051708, 2005.
    16. Faetti, S. and Mutinati, G.C., "An improved reflectometric method to measure the azimuthal anchoring energy of nematic liquid crystals," Eur. Phys. J. E 10, 265, 2003a.
    17. Faetti, S. and Mutinati, G.C., "Light transmission from a twisted nematic liquid crystal Accurate methods to measure the azimuthal anchoring energy," Phys. Rev. E 68, 026601, 2003b.
    18. Fonseca, J.G. and Galerne, Y., "Simple method for measuring the azimuthal anchoring strength of nematic liquid crystals," Appl. Phys. Lett. 79, 2910-2912, 2001
    19. Gazalet, M.G., Ravez, M., Haine, F., Bruneel C., and Bridoux E., "Acousto-optic low frequency shifter," Appl. Opt., Vol. 33, pp. 1293-1298, 1994.
    20. Gelmini, E., Minomi, U., and Docchio, F., "Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement," Opt. Lett., Vol. 19, pp. 213-215, 1994.
    21. Govindarsju, T., Bertics, P.J., Raines, R.T., and Abbott, N.L., "Using Measurements of Anchoring Energies of Liquid Crystals on Surfaces To Quantify Proteins Captured by Immobilized Ligands," J. Am. Chem. Soc. 128, 11223-11231, 2007
    22. Gwag, J.S., Park, K.H., Lee, G.D., Yoon, T.H. and Kim, J.C., "Simple cell gap measurement method for twisted-nematic liquid crystal cells," Jpn. J. Appl. Phys. 43 L30, 2004.
    23. Haus, H.A., Waves and fields in optoelectronics, Prientice-Hall, Inc., Englewood Cliffs, New Jersey, Ch. 12, 1984.
    24. Hecht, Optics, Addision-Wesley, 3rd ed., Ch. 8, pp. 330-340, 1998.
    25. Holland, J.H., Adaptation in Natural and Artificial Systems, MIT Press Cambridge, MA USA, 1975.
    26. Jeng, Y.T. and Lo, Y.L., "Heterodyne polariscope for sequential measurements of the complete optical parameters of a multiple-order wave plate," Appl. Opt. 45, 1134-1141, 2006.
    27. Jones, R.C., "A new calculation for the treatment of optical systems, III. The Sohncke theory of optical activity," J. Opt. Soc. Am., Vol. 31, pp. 500-503, 1941.
    28. Kawamura, M. and Sato, S., "Measurement of cell thickness distribution in reflective liquid crystal cells using a two-dimensional Stokes parameter method," Jpn. J. Appl. Phys. Vol. 40, pp. L621-L624, 2001.
    29. Kawamura, M., Goto, Y, and Sato, S., "Two-dimensional measurements of cell parameter distributions in reflective liquid crystal displays by using multiple wavelengths Stokes parameters," J. Appl. Phys. Vol. 95, pp. 4371-4375, 2004.
    30. Kemp, J.C., "Piezo-optical birefringence modulators: new use for a long known effect," J. Opt. Sci. Am., Vol. 59, pp. 950-954, 1969.
    31. Kothiyal, M.P. and Delisle, C., "Optical frequency shifter for heterodyne interferometry using coumterrotating wave plates," Opt. Lett., Vol. 9, pp. 319-321, 1984.
    32. Kuo, W.C., Lia, K.Y., and Chou C., "Simultaneous measurement of phase retardation and fast-axis angle of phase retardation plate," Jpn. J. Appl. Phys. 44, 1095-1100, 2005.
    33. Lien, A. and Takano, H., "Cell gap measurement of filled twisted nematic liquid crystal displays by a phase compensation method," J. Appl. Phys. 69, 1304-1309, 1991.
    34. Lin, J.F., Liao, T.T., Lo, Y.L., and Lee, S.Y., "The optical linear birefringence measurement using a zeeman laser," Opt. Commun. 274, 153-158, 2007.
    35. Lo, Y.L., Chih, H.W., Yeh, C.Y., and Yu, T.C., "Full-field heterodyne polariscope with an image signal processing method for principal axis and phase retardation measurements," Appl. Opt. 45, 8006-8012, 2006.
    36. Lo, Y.L., Lai, C.H., Lin, J.F., and Hsu, P.F., "Simultaneous absolute measurements of principal angle and phase retardation with a new common-path heterodyne interferometer," Appl. Opt. 43, 2013-2022, 2004a.
    37. Lo, Y.L., Lee, S.Y., and Lin, J.F., "The new circular polariscope and the Senarmont setup with electro-optic modulation for measuring the optical linear birefringent media properties," Opt. Commun. 237, 267-273, 2004b.
    38. Lo, Y.L., Lin, J.F., and Lee, S.Y., "Polariscope for the simultaneous measurements of the principal axis and phase retardation using two phase-locked extractions," Applied Optics 43 6248, 2004c.
    39. Ma´rquez, A., Yamauchi, M., Davis, J.A., and Franich, D.J., "Phase measurement of a twist nematic liquid crystal spatial light modulator with a common-path interferometer," Opt. Commun. 190, 129-133, 2001.
    40. Martinelli, M. and Chipman, R.A., "Endless polarization control algorithm using adjustable linear retarders with fixed axes," J. Lightwave Technol., vol. 21, no. 9, pp. 2089-2096, 2003.
    41. Michalewicz, Z., "Genetic algorithms + Data structures = Evolution Programs," Springer-Verlag, New York 1992.
    42. Montarou, C.C. and Gaylord, T.K., "Two-wave-plate compensator for single-point retardation measurement," Appl. Opt. 43, 6580-6595, 2004.
    43. Moreau, J., Loriette, V., and Boccara, A.C., "Full-field birefringence imaging thermal-light polarization-sensitive optical coherence tomography. I. Theory," Appl. Opt. 42, 3800-3810 2003.
    44. Mujat, M., Baleine, E., and Dogariu, A., "Interferometric imaging polarimeter," J. Opt. Soc. Am. A 21, 2244-2249, 2004.
    45. Nishioka, T., Satake, T., Kurata, T., and Maehara, T., "Novel and practical gap measurement for reflective liquid crystal cells," Jpn. J. Appl. Phys. Vol. 44, pp. 1101-1110, 2005.
    46. Pohl, L., Weber, G., Eidenschink, R., Baur, G., and Fehrenbach, W., " Low-Δn-twisted nematic cell with improved optical properties," Appl. Phys. Lett. 38, 497-499, 1981.
    47. Rochford, K.B., Rose, A.H., and Wang, C.M., "NIST study investigates retardance uncertainty," Laser Focus World 33, 223-227, 1997.
    48. Sato, Y., Sato, K. and Uchida, T, "Relationship between Rubbing Strength and Surface Anchoring of Nematic Liquid Crystal," Jpn. J. Appl. Phys., 31, L579-581, 1992.
    49. Shurcliff, W. A., "Polarized light," Harvard U. Press, Cambridge, Mass., 1962.
    50. Su, D.C., Chiu, M.H., and Chen, C.D., "Simple two frequency laser," Prec. Eng., Vol. 18, pp. 161-163, 1996.
    51. Suits, J.C., "Magneto-optical rotation and ellipticity measurements with a spinning analyzer," Rev. Sci. Instrum., Vol. 42, pp. 19-22, 1971.
    52. Suzuki, T. and Hioki, R., "Translation of light frequency by moving grating," J. Opt. Soc. Am., Vol. 57, pp. 1551, 1967.
    53. Takasaki, H., Umeda, N., and Tsukiji, M., "Stabilized transverse Zeeman laser as a new light source for optical measurement," Appl. Opt., Vol. 19, pp. 435-441, 1980.
    54. Teng, H.K., Lang, K.C., and Yen, C.C., "Optical polarization rotating technique for characterizing linear birefringence with full range," Optical Engineering 44, 123602, 2005.
    55. Tsai, C.C., Chou, C., Han, C.Y., Hsieh, C.H., Liao, K.Y., and Chao, Y.F., "Determination of optical parameters of a twisted-nematic liquid crystal by phase-sensitive optical heterodyne interferometric ellipsometry," Appl. Opt. 44, 7509-7514, 2005.
    56. Wickramasingle, H.K., "Laser heterodyne probes," Optical Metrology, NATO ASI series, 1987.
    57. Yang, F.Z., Cheng, H.F., Gao, H.J., and Samples, J.R., "Determination of the torsional anchoring of a twisted nematic liquid crystal using the half-leaky guided mode technique," Liq. Cryst. 28, 51-57, 2001
    58. Ye, C. and Keranen, E., "Nonmechanical rotation of a linear polarizer preceding a photodetector," J. Opt. Soc. Am. A, vol. 14, no. 3, pp. 682-685, 1997.
    59. Ye, C., "Construction of an optical rotator using quarter-wave plates and an optical retarder," Optical Engineering, vol. 34, no.10, pp. 3031-3035, 1995.
    60. Yeh, P. and Gu, C., "Optics of liquid crystal displays," Wiley, New York, 121, 2000.
    61. Zhou, Y., He, Z., and Sato, S., "A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement," Jpn. J. Appl. Phys. 36, 2760-2764, 1997.
    62. Zhou, Y., He, Z., and Sato, S., "An improved Stokes parameter method for determination of cell thickness and twist angle distributions in twisted nematic liquid crystal devices," Jpn. J. Appl. Phys. 37, 2567-2571, 1998.
    63. Zhou, Y., He, Z., and Sato, S., "Generalized relation theory of torque balance method for azimuthal anchoring measurements," Jpn. J. Appl. Phys. 38, 4857-4858, 1999.
    64. Zhuang, Z., Suh, S.W., and Patel, J.S., "Polarization controller using nematic liquid crystals," Optics Letters, vol. 24, no. 10, pp. 694-696, 1999

    下載圖示 校內:2015-08-04公開
    校外:2015-08-04公開
    QR CODE