| 研究生: |
洪維瑛 Hung, Wei-Ying |
|---|---|
| 論文名稱: |
利用水熱法製備Cobalt-Silicate和Nickel-Silicate孔洞複合性材料作為吸附劑和催化觸媒 Using Hydrothermal Treatment to Synthesize Cobalt-Silicate and Nickel-Silicate Mesoporous Materials as Adsorbents and Catalysts |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | cobalt-silicate 、nickel-silicate 、稻殼 、吸附劑 、催化觸媒 |
| 外文關鍵詞: | cobalt-silicate, nickel-silicate, rice husk, adsorbents, catalysts |
| 相關次數: | 點閱:100 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在於,利用簡便的方式合成出高表面積的cobalt-silicate和nickel-silicate孔洞性複合材料,並對其應用進行探討。研究中發現此類型的孔洞複合材料對於吸附毒性離子(Hg2+、HAsO42-)和作為催化觸媒有良好的效果。
本實驗室對於高表面積之中孔洞氧化矽材料的合成,已累積相當久的經驗,因此在本研究,即引入高表面積中孔洞氧化矽與金屬氫氧化物結合,在100℃鹼性環境下進行水熱反應,使中孔洞氧化矽溶解再結晶去剝蝕金屬氫氧化物,接著重組排列後形成片狀堆疊的結構,此結構與自然環境中存在的phyllosilicate minerals相似。此外,藉由改變實驗條件(金屬/氧化矽比例、金屬氫氧化物熟化的pH值和時間、水熱反應時間、氧化矽來源、調控pH值的鹼源…等),找尋一最佳合成條件,並發現此合成方式具有很好的再現性和組成包容性;另外,再以更簡化的步驟直接以矽酸鈉作為氧化矽來源進行合成,在適當的條件下一樣能得到高表面積的孔洞性複合材料;因此更進一步以價格低的工業級矽酸鈉取代,其所合成之產物cobalt-silicate的表面積達到454 m2/g,而nickel-silicate達到551 m2/g,此結果對於大量合成的便利性和成本的考量是一大優勢。
自然界中大部分的禾本科植物內都含有無機物氧化矽用以增強結構強度,其中稻草便是台灣常見的禾本科植物。嘗試將稻殼引入合成作為氧化矽來源,利用鹼性環境水熱時使稻殼內的氧化矽溶出與金屬氫氧化物結合,一樣可形成metal-silicates。此外,稻殼中還含有木質素、纖維素等有機物質,可藉由改變水熱時的水量、溶液的酸鹼性而分段抽取出所需物質,木質素進一步可轉碳形成高表面積之孔洞碳材,而纖維素則可作為生質酒精之原料,抽取掉無機物後剩下的稻殼可燃燒產生熱能用於發電,此結果融入綠色化學廢棄物再利用的概念。
In this thesis, we mainly focused on providing a simple method to synthesize high surface-area porous cobalt-silicate and nickel-silicate. In practical applications, these metal-silicate composites demonstrate high performances to be used as adsorbents of toxic ions (of Hg2+, HAsO42-) and as catalysts towards O3, NH3 and N2O-decompositions.
Because we can mass-produce the mesoporous silica of high surface-area, it was directly used to combine with metal hydroxides. In neutral or alkaline solution, mesoporous silica can dissolve and reconstruct to exfoliate the layered metal hydroxides during hydrothermal treatment, and then sheet-like structure was formed. This clay structure is similar to the metal phyllosilicate minerals in nature. In order to find an optimal synthesis conditions, many experimental factors (the ratio of metal/silica, the pH value and aging time of metal hydroxide, the hydrothermal reaction time, silica sources, alkali sources, etc.) have been studied. The resulted materials are highly reproducible and this synthetic concept can be extended to use other cheap sources. For example, sodium silicate can also be used as the silica source to prepare porous cobalt-silicate with 454 m2/g and nickel-silicate with 551 m2/g, respectively. These good results reveal that this synthesis method possesses advantages of convenience and low-cost.
In nature, most of gramineae plants contain inorganic silica to enhance the structural strength. The bio-silicate isolated from rice husk can be used as an alternative silica source to prepare metal-silicates. During hydrothermal reaction, silica in rice husk dissolves and then combines with metal hydroxide under an alkaline environment. In addition to silica, rice husk also contains lignin, cellulose and other organic matters. The desired substance can be extracted in sequence by changing water amount and the pH value of the solution. Lignin can be further carbonized to form porous carbon with high surface-area, cellulose can be used as raw material of the bio-ethanol, and the silica-extracted rice husk is easier to burn off to release heat for electricity generation. These applications are fit the green chemistry concepts of reusing agricultural wastes.
1. D. H. Everett, Pure Appl Chem, 1972, 31, 578.
2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins and J. L. Schlenker, J Am Chem Soc, 1992, 114, 10834-10843.
3. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
4. H. R. Luckarift, J. C. Spain, R. R. Naik and M. O. Stone, Nat Biotechnol, 2004, 22, 211-213.
5. M. Mureseanu, A. Galarneau, G. Renard and F. Fajula, Langmuir, 2005, 21, 4648-4655.
6. Y. J. Wang and F. Caruso, Chem Mater, 2005, 17, 953-961.
7. C. G. Wu and T. Bein, Science, 1994, 266, 1013-1015.
8. C. G. Wu and T. Bein, Science, 1994, 264, 1757-1759.
9. C. G. Wu and T. Bein, Chem Mater, 1994, 6, 1109-1112.
10. T. Abe, Y. Tachibana, T. Uematsu and M. Iwamoto, J Chem Soc Chem Comm, 1995, 1617-1618.
11. C. H. Ko and R. Ryoo, Chem Commun, 1996, 2467-2468.
12. Y. S. Lee, D. Surjadi and J. F. Rathman, Langmuir, 1996, 12, 6202-6210.
13. S. C. Tsang, J. J. Davis, M. L. H. Green, H. Allen, O. Hill, Y. C. Leung and P. J. Sadler, J Chem Soc Chem Comm, 1995, 1803-1804.
14. J. S. Reddy and A. Sayari, J Chem Soc Chem Comm, 1995, 2231-2232.
15. A. Corma, M. T. Navarro, J. Perezpariente and F. Sanchez, Zeolites and Related Microporous Materials: State of the Art 1994, 1994, 84, 69-75.
16. M. Hartmann, A. Poppl and L. Kevan, J Phys Chem-Us, 1996, 100, 9906-9910.
17. B. Chakraborty, A. C. Pulikottil and B. Viswanathan, Catal Lett, 1996, 39, 63-65.
18. R. Neumann and A. M. Khenkin, Chem Commun, 1996, 2643-2644.
19. A. Sayari, Chem Mater, 1996, 8, 1840-1852.
20. N. Knezevic, Doctoral Thesis / Dissertation, 2009, 103.
21. Y. Han, F. S. Xiao, S. Wu, Y. Y. Sun, X. J. Meng, D. S. Li, S. Lin, F. Deng and X. J. Ai, J Phys Chem B, 2001, 105, 7963-7966.
22. Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao and F. S. Xiao, Angew Chem Int Edit, 2001, 40, 1258-+.
23. Y. Han, S. Wu, Y. Y. Sun, D. S. Li, F. S. Xiao, J. Liu and X. Z. Zhang, Chem Mater, 2002, 14, 1144-1148.
24. A. Bhaumik and S. Inagaki, J Am Chem Soc, 2001, 123, 691-696.
25. Z. T. Zhang, Y. Han, F. S. Xiao, S. L. Qiu, L. Zhu, R. W. Wang, Y. Yu, Z. Zhang, B. S. Zou, Y. Q. Wang, H. P. Sun, D. Y. Zhao and Y. Wei, J Am Chem Soc, 2001, 123, 5014-5021.
26. R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 1997, 36, 477-479.
27. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 1997, 36, 1001-1003.
28. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 1998, 31, 485-493.
29. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor Mat, 1998, 25, 43-57.
30. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr Pap Am Chem S, 1993, 206, 57-Petr.
31. M. G. Clerici, G. Bellussi and U. Romano, J Catal, 1991, 129, 159-167.
32. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal Lett, 1996, 37, 113-120.
33. M. D. Alba, Z. H. Luan and J. Klinowski, J Phys Chem-Us, 1996, 100, 2178-2182.
34. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J Catal, 1994, 148, 569-574.
35. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem Mater, 2001, 13, 552-557.
36. D. R. Rolison, Science, 2003, 299, 1698-1701.
37. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor Mesopor Mat, 2008, 113, 562-574.
38. M. Plabst, L. B. McCusker and T. Bein, J Am Chem Soc, 2009, 131, 18112-18118.
39. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J Catal, 1989, 115, 301-309.
40. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J Phys Chem B, 2002, 106, 13287-13293.
41. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
42. H. P. Beohm, Adv. Catal., 1966, 16, 226.
43. R. K. Iler, The Chemistry of Silica John Wiley, New York, 1979.
44. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935.
45. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
46. C. J. Brinker and G. W. Scherer, J Non-Cryst Solids, 1985, 70, 301-322.
47. 中國地質大學-精品課程網, 第二十一章第四節.
48. E. P. Giannelis, R. Krishnamoorti and E. Manias, Adv Polym Sci, 1999, 138, 107-147.
49. Soil and Environmental Biogeochemistry @ Stanford University, Soil Chemistry, Mineral-Summary.
50. 勞工安全衛生研究所, 物質安全資料表.
51. 行政院環境保護署, 飲用水水質項目對人體健康的影響.
52. 行政院環境保護署, 放流水標準.
53. Chemical Book, CAS數據庫列表.
54. 教育部學習加油站, 高中化學教材資源中心, 化學與環保, 臭氧專題.
55. S. Brunaller, P. H. Emmett and E. Teller, J Am Chem Soc, 1938, 60, 390.
56. E. P. Barrett, L. G. Joyner and P. P. Halenda, J Am Chem Soc, 1951, 73, 373.
57. P. J. M. Carrott, A. I. Mcleod and K. S. W. Sing, Studies in Surface Science and Catalysis, 1982, 10, 403-410.
58. W. D. Harkins and G. Jura, J Am Chem Soc, 1944, 66, 1366-1373.
59. W. T. Thomson, Phil Mag Lett, 1871, 42, 448.
60. G. Ertl, H. Knözinger, F. Schüth and J. E. Weitkamp, Vol 2, 2nd, WILRY-VCH Verlag GmbH&Co. KGaA, Weinheim, 2008.
61. JCPDS No. 30-0443.
62. JCPDS No. 21-0871.
63. U. Kalapathy, A. Proctor and J. Shultz, Bioresource Technol, 2000, 72, 99-106.
64. R. Z. Ma, Z. P. Liu, K. Takada, K. Fukuda, Y. Ebina, Y. Bando and T. Sasaki, Inorg Chem, 2006, 45, 3964-3969.
65. JCPDS No. 42-1467.
66. JCPDS No. 14-0117.
67. JCPDS No. 49-1859.
68. JCPDS No. 47-1049.
69. M. Patel, A. Karera and P. Prasanna, J Mater Sci, 1987, 22, 2457-2464.
70. O. V. Nagornyi, A. S. Kolyshkin and V. V. Vol'khin, Russ J Appl Chem+, 2004, 77, 1097-1099.
71. Nadim R. K., Patrick V. B. and J. L. K., SANDIA NATIONAL LABORATORIESALBUQUERQUE, NEW MEXICOUNITED STATES OF AMERICA, 2009.
72. M. Sadiq, T. H. Zaidi and A. A. Mian, Water, Air, Soil Pollut., 1983, 20, 369-377.
73. Water Resource Quality - Arsenic Removal Technologies, Eawag Aquatic Research.
74. Y. Masue, R. H. Loeppert and T. A. Kramer, Environ Sci Technol, 2007, 41, 837-842.
75. M. H. K. Nogi, M. Naito and T. Yokoyama, Nanoparticle Technology Handbook, 35.
76. A. L. Yakovlev, G. M. Zhidomirov and R. A. van Santen, Catal Lett, 2001, 75, 45-48.
77. L. Yan, T. Ren, X. L. Wang, D. Ji and J. S. Suo, Appl Catal B-Environ, 2003, 45, 85-90.