簡易檢索 / 詳目顯示

研究生: 侯婉婷
Hou, Wan-Ting
論文名稱: 以精實管理原則及模擬最佳化求解高階自行車製造之焊接區少人化問題
The use of lean principles and simulation optimization in solving the Shojinka problem from the welding area of a high-end bicycle manufacturing system
指導教授: 楊大和
Yang, Ta-Ho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 離散事件模擬高階自行車精實管理模擬最佳化價值流圖
外文關鍵詞: discrete-event simulation, high-end bicycle, lean management, Simulation optimization, Value Stream Mapping(VSM)
相關次數: 點閱:119下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於自行車的製造商除了增加生產效率外還須以大量客製化的生產方式來滿足不同的顧客需求,且面臨環境競爭的趨勢下,製造商漸漸地朝向高品質、低成本、交期準等目標持續改善。本研究以一間位在台南具有50年歷史的自行車工廠為案例,實際到現場實習一年,參與改善,該公司屬於接單式生產,目前案例公司從買料到完成品出貨長達半年的前置時間,其中焊接製程所耗費的時間最長為兩個月,且屬於大量的人力作業,因此本研究欲藉由精實管理原則的導入及少人化的觀點,打破焊接現況方案(定員制),以模擬最佳化的工具求解最適人員配置及數量,讓管理者在進行改善或是遇到在製品堆積時於人員數量調整上有一個改善的參考依據。首先以現況方案價值流圖找出所要分析的問題點,再根據問題點進行精實管理原則的導入,因為本研究是筆者實際到現場參與改善,也看到實際現場實際的改善,在產出不受影響情況下,改善比例分別為:在製品和週期時間為16%;現場空間16%;瓶頸站人員也不需再加班,大約可以比以往提早1.5個小時下班,因此本研究也將改善的過程加入方案之一,並利用模擬工具建立模式產生不同方案之績效指標值,觀察方案間改善的狀況,最後少人化的部分則利用模擬最佳化工具求解最適人員配置及數量,並達到少人化的效益,經由實驗分析結果,證實導入精實管理原則及做少人化對於系統來說有最佳的績效表現,然而在產出不受影響的情況下,績效指標提升代表系統內部的效率提升,各指標改善比例分別為:在製品55%、週期時間57%、服務水準78%、人力數量22%。

    In this case, high-end bicycle manufacture presented here to be example, first, we use Value Stream Mapping(VSM)to find out the potential improvement opportunities in the system. The case company has long lead time, every products from the beginning of purchasing to finished product up to six months. From VSM that we can find out material took most of time in waiting, therefore center about the reason of these problems, we proposed appropriate lean principle after discuss with experts and line leader to design the scenario, there are three scenario in this study. And how to measure the performance of every scenario? We used discrete-event simulation to generate the value of performance index, and also used optimization tool to find out better operator allocation and number of each scenario in order to reach advantage of Shojinka.
    Because this case study was actually the author to participate the progress of improvement, the improvement rates were: work-in-process (WIP) and cycle time by 16%; field of space by 16% ; bottleneck station personnel do not need to work overtime, by approximately 1.5 hours earlier than in the past to work when throughput didn’t impacted, we also taken into account the improvement situation to one of our scenarios. Then we used discrete-event simulation to measure the performance of each scenario. After experiment, it proved that lean principles could improve the system performances, such as WIP、cycle time、service level when throughput didn’t impacted. Based on these reasons, it represents the true efficiency in the system. And at the end of the experiment, we use sensitivity analysis to see that when demand change if system need to meet the service level, the operator number of system and the throughput of system will how to change. From sensitivity analysis can conclude that the number of operator in system increase when demand increase, on the contrary, it decrease when demand decrease. From this point of view, the system have reached the advantage of Shojinka.

    目錄 目錄vii 表目錄ix 圖目錄x 1.緒論1 1.1研究背景與動機1 1.2研究目的4 1.3研究流程5 1.4研究架構6 2.文獻探討8 2.1精實生產系統8 2.2價值流圖9 2.3離散事件模擬13 2.4限制理論16 2.5組織能力的進化18 2.6少人化20 2.7模擬最佳化21 2.8小結26 3.案例說明和價值流圖分析27 3.1案例介紹28 3.2繪製現況方案價值流圖32 3.3現況方案價值流圖分析及找出改善目標38 4.方法及分析40 4.1精實改善及方案產生40 4.2模擬模式建構48 4.3模擬最佳化求解62 4.4實驗結果與分析64 4.5敏感度分析68 5.結論與建議70 5.1結論70 5.2未來研究與建議71 參考文獻72 表目錄 表2.1模擬模式建構過程說明14 表3.1車架結構組成29 表3.2現況方案價值流圖相關資訊32 表4.1不同客戶包含之車架結構細目49 表4.2模擬所需資訊與系統假設50 表4.3各製程詳細資訊55 表4.4前後三角燒焊各產品加工時間55 表4.5現況方案效度驗證表59 表4.6改善後方案效度驗證表61 表4.7變數設定63 表4.8未少人化之各方案績效比較65 表4.9少人化後各方案各製程人員配置66 表4.10少人化後之各方案績效比較67 表4.11績效總表68 圖目錄 圖1.1微笑曲線1 圖1.2台灣自行車產業發展趨勢圖3 圖1.3各階級自行車主要生產國家3 圖1.4研究流程圖6 圖2.1TPS house8 圖2.2超級市場拉動機制10 圖2.3基準節拍工程10 圖2.4有節奏的領取12 圖2.5模擬研究步驟圖15 圖2.6限制理論例子16 圖2.7限制理論示意圖16 圖2.8限制理論五步驟17 圖2.9鼓-緩衝-繩示意圖18 圖2.10產品製造的組織能力與表現度19 圖2.11產品製造組織能力的三階段20 圖2.12最佳化與模擬模式間的關係22 圖2.13最佳化過程23 圖2.14二維空間參考集合24 圖3.1研究方法流程27 圖3.2產品示意圖28 圖3.3整體流程圖30 圖3.4現況方案的第一視圖-表示顧客33 圖3.5現況方案的第二視圖-表示所有工程、數據方塊及庫存三角形33 圖3.6現況方案的第三視圖-表示物流35 圖3.7現況方案的第四視圖-表示資訊流36 圖3.8現況方案的第五視圖-表示時間37 圖3.9現況方案價值流圖39 圖4.1研究方法流程40 圖4.2精實改善流程41 圖4.3連續流動與超市示意圖43 圖4.4大批量移動44 圖4.5小批量移動44 圖4.6案例公司改善後之WIP和產出趨勢圖45 圖4.7方案演進過程 45 圖4.8現況方案到改善後方案之實際改善過程46 圖4.9現況方案到改善後方案之實際改善過程照片47 圖4.10車架結構階層圖49 圖4.11模擬模式整體架構51 圖4.12工單產生邏輯51 圖4.13工單產生邏輯設定52 圖4.14產品選擇邏輯52 圖4.15產品選擇邏輯設定53 圖4.16產品於製程間流動的指示邏輯53 圖4.17產品於製程間流動的指示邏輯設定54 圖4.18加工流程邏輯56 圖4.19加工流程邏輯設定56 圖4.20收集輸出資料邏輯57 圖4.21收集輸出資料邏輯設定57 圖4.22Statistics績效設定58 圖4.23觀察WIP變化決定暖機時間58 圖4.24決定重複模擬次數59 圖4.25改善後方案模擬模式建構邏輯與設定60 圖4.26最佳化方案模擬模式建構邏輯與設定61 圖4.27OptQuest相關設定64 圖4.28需求變動下對人員數量及產出之變化69

    中山清孝,國瑞汽車TPS自主研究會譯,2006,直傳豐田方式,財團法人中衛發展中心,台北。
    王騰寬,2014,以精實原則及模擬最佳化求解醫療系統流程設計問題,國立成功大學,博士論文,台南。
    成沢俊子、Shook, J.,李兆華譯,2009,大家來學TPS:豐田改善直達車,財團法人中衛發展中心,台北。
    柳生俊二,陳坤賞譯,2008,從單元細胞開始的同期生產方式,財團法人中衛發展中心,台北。
    陳仁義,2010,騎單車保健康,提升心肺功能,工商時報,Available:http://www.chinatimes.com/reporter/398?page=67 (2016.05.01 取得)
    柯宜婷,2011,以價值流圖及模擬最佳化進行汽車維修廠之精實服務系統研究,國立成功大學,碩士論文,台南。
    財團法人自行車暨健康科技工業研究發展中心,2015,自行車產業概況,產業學院。
    程炳源,2008,以模擬最佳化進行TFT-LCD自動物料搬運系統之精實系統設計,國立成功大學,碩士論文,台南。
    張閔智,2010,以混整數規劃求解單元工程之少人化問題,國立成功大學,碩士論文,台南。
    張家銘,2015,以離散事件模擬與多屬性決策系統探討光學眼鏡製造之精實管理,國立成功大學,碩士論文,台南。
    楊大和、謝瓊嬉, 2008, 綜觀“精實系統”的原理、工具及組織, 品質月刊, 44 (11),49-55.
    楊大和,2015,精實管理課程上課講義,國立成功大學,台南。
    藤本隆宏,2005,能力構築競爭,中衛發展中心,台北。
    麥克.魯斯、約翰.舒克,趙克強譯,2006,學習觀察 : 增加價值、消除浪費的 價值流圖,財團法人中衛發展中心,台北。
    Aronson, J., Liang, T.-P. and Turban, E., 2005, Decision Support Systems and Intelligent Systems , Pearson Prentice Hall, U.S.A.
    A-Team 發展定位,2003,A-Team 網站,Available:http://www.a-team.tw/index.asp (2016.05.01 取得)
    Banks, J., Carson, J. and Nelson, B., 1996, Discrete-event system simulation, 2nd edition, Peason Prentice Hall, New Jersey.
    Dal Forno, A.J., Pereira, F.A., Forcellini, F.A. and Kipper, L.M., 2014, Value Stream Mapping: a study about the problems and challenges found in the literature from the past 15 years about application of Lean tools, The International Journal of Advanced Manufacturing Technology, 72 (5-8),779-790.
    Darlington, J., Francis, M., Found, P. and Thomas, A., 2015, Design and implementation of a Drum-Buffer-Rope pull-system, Production Planning & Control, 26 (6),489-504.
    Glover, F., 1989, Tabu search-part I, ORSA Journal on Computing, 1 (3),190-206.
    Glover, F., Kelly, J.P. and Laguna, M., 1996, New advances and applications of combining simulation and optimization, Proceedings of the 28th Conference on Winter Simulation, Coronado, California, 144-152.
    Glover, F., Kelly, J.P. and Laguna, M., 1999, New advances for wedding optimization and simulation, Proceedings of the 31th Conference on Winter Simulation, Phoenix, Arizona, 255-260.
    Glover, F. and Laguna, M., 1997, Tabu Search, Springer, Boston.
    Glover, F., Laguna, M. and Marti, R., 2000, Fundamentals of scatter search and path relinking, Control and Cybernetics, 29 (3),653-684.
    Goldratt, E.M. and Cox, J., 1984, The goal: Excellence in manufacturing, North River Press, New York.
    Gupta, M.C. and Boyd, L.H., 2008, Theory of constraints: a theory for operations management, International Journal of Operations & Production Management, 28 (10),991-1012.
    Gurumurthy, A. and Kodali, R., 2011, Design of lean manufacturing systems using value stream mapping with simulation: A case study, Journal of Manufacturing Technology Management, 22 (4),444-473.
    Haddock, J. and Mittenthal, J., 1992, Simulation optimization using simulated annealing, Computers & Industrial Engineering, 22 (4),387-395.
    Hicks, C., McGovern, T., Prior, G., and Smith, I., 2015, Applying lean principles to the design of healthcare facilities, International Journal of Production Economics, 170, 677-686.
    Hopp, W.J. and Spearman, M.L., 2008, Factory physics, 3rd edition, Waveland Press, United States.
    Kelton, W.D., Sadowski, R.P. and Swets, N.B., 2014, Simulation with Arena, 6th edition, McGraw-Hill Education, New York.
    Kuo, Y. and Yang, T., 2006, A case study on the operator allocation decision for TFT-LCD inspection and packaging process, Journal of Manufacturing Technology Management, 17 (3),363-375.
    Laguna, M. 1997, Optimization of complex systems with OptQuest, Latest revision: April 8 , 1-14.
    Liker, J. and Rother, M., 2011, Why lean programs fail, Knowledge Center of Lean Enterprise Institute, Available:http://www. lean. org/common/display (2016.05.11 取得).
    Marchwinski, C. 2008. For Athletic Shoe Company, the Soul of Lean Management Is Problem Solving. Lean Enterprise Institute, Available: http://www.lean.org/common/display/?o=812 (2016.05.01 取得).
    Monden, Y., 2011, Toyota Production System: an Integrated Approach to Just-In-Time, CRC Press, Boca Raton.
    Serrano Lasa, I., Castro, R.d. and Laburu, C.O., 2009, Extent of the use of Lean concepts proposed for a value stream mapping application, Production Planning & Control, 20 (1),82-98.
    Shingo, S., 1981, A study of Toyota Production System from Industrial Engineering Viewpoint, Japan Management Association, Tokyo.
    Singh, B., Garg, S.K. and Sharma, S.K., 2011, Value stream mapping: literature review and implications for Indian industry, The International Journal of Advanced Manufacturing Technology, 53 (5),799-809.
    Swisher, J.R., Hyden, P.D., Jacobson, S.H. and Schruben, L.W., 2000, A survey of simulation optimization techniques and procedures, Proceedings of 2000 Winter Simulation Conference, Orlando, FL,119-128.
    Venkataraman, K., Ramnath, B.V., Kumar, V.M. and Elanchezhian, C., 2014, Application of Value Stream Mapping for Reduction of Cycle Time in a Machining Process, Procedia Materials Science, 6,1187-1196.
    Vlachos, I., 2015, Application of lean thinking in the food supply chains: case study, Production Planning & Control, 26 (16),1351-1367.
    Wang, T. K., Chan, F. T. S., and Yang, T., 2014, The integration of group technology and simulation optimization to solve the flow shop with highly variable cycle time process:a surgery scheduling case study. Mathematical Problems in Engineering, 2014 (September), 11 pages .
    Wang, T. K., Yang, T., Yang, C.Y. and Chan, F.T., 2015, Lean principles and simulation optimization for emergency department layout design, Industrial Management & Data Systems, 115 (4),678-699.
    Womack, J.P. and Jones, D.T., 2003, Lean Thinking: Banish Waste and Create Wealth in Your Corporation, Simon and Schuster, New York.
    Yang, T., 2009, An evolutionary simulation–optimization approach in solving parallel-machine scheduling problems–A case study, Computers & Industrial Engineering, 56(3), 1126-1136.
    Yang, T., Hsieh, C.H. and Cheng, B.Y., 2011, Lean-pull strategy in a re-entrant manufacturing environment: a pilot study for TFT-LCD array manufacturing, International Journal of Production Research, 49 (6),1511-1529.
    Yang, T., Kuo, Y., and Chang, I., 2004, Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors—a case study. International Journal of Production Research, 42(19), 4015-4030.
    Yang, T., Kuo, Y., Su, C.T., and Hou, C.L., 2015a, Lean production system design for fishing net manufacturing using lean principles and simulation optimization, Journal of Manufacturing Systems, 34 (1),66-73.
    Yang, T. and Lu, J.C., 2011, The use of a multiple attribute decision-making method and value stream mapping in solving the pacemaker location problem, International Journal of Production Research, 49 (10),2793-2817.
    Yang, T., Wang, T. K., Li, V. C., and Su, C. L., 2015b, The Optimization of Total Laboratory Automation by Simulation of a Pull-Strategy. Journal of Medical Systems, 39(1), 1-12.

    下載圖示 校內:2017-08-01公開
    校外:2018-08-01公開
    QR CODE