簡易檢索 / 詳目顯示

研究生: 余杰勳
Yu, Chieh-Hsun
論文名稱: 內設扭旋片陣列管道紊流場壓損與熱傳實驗數值研究
An experimental and numerical study of pressure drop and heat transfer of turbulent flow through channel with twisted-tape array
指導教授: 張始偉
Chang, Shyy Woei
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 63
中文關鍵詞: 扭旋片熱傳強化柱鰭陣列管道
外文關鍵詞: Twisted Tape Array, Heat Transfer Enhancement, Pin-Fin Channel
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出之內設扭旋片柱鰭陣列,為新穎之被動式熱傳強化方式,可提升管流熱傳性能。本研究在雷諾數為5000、7500、10000、12500及15000的測試條件,量測扭旋片柱鰭陣列管道之紐賽數、范寧摩擦係數、熱性能係數。本研究使用ANSYS-Fluent作為模擬程式,對紊流管道內之熱性能及流場結構進行相關性分析。本論文使用一組熱傳數據及流場模擬結果,說明管道熱傳強化機制及相關的流場現象。由於扭旋片陣列所誘發的渦流強化熱傳性能,本實驗量測的管道壁面平均紐賽數與范寧摩擦係數分別為平滑管流的5.26 - 4.73及39.44 - 38.46倍,其熱性能係數於5000≤Re≤15000之範圍提升至1.55 - 1.39。與不同幾何形狀的柱鰭陣列比較,本研究所使用之扭旋片柱鰭陣列在相似的壓損條件,提高了熱傳強化性能,以及定泵功率條件下評估之熱性能係數。內設扭旋片柱鰭陣列管道之熱傳強化性能及熱性能係數之提升,確認此被動式熱傳強化裝置於工程應用之可行性。

    The present study investigates the hydrothermal performance of a rectangular channel enhanced by the newly devised twisted-tape pin-fin array. The flow characteristics are studied using ANSYS-Fluent code. The simulation flow results are applied for the interpretation of the heat-transfer and pressure-drop measurements. The simulation and the experimental turbulent flow conditions are identical at Reynolds numbers of 5000, 7500, 10000, 12500 and 15000. The experimental results show that the Nusselt numbers and Fanning friction factors of the present enhanced channel are in the respective ranges of 5.26-4.73 and 39.44-38.46 times of the plain tube references, leading to the thermal performances between 1.55 and 1.39 at 5000≤Re≤15000. The thermal performance factors detected from the present test channel are raised from that with the conventional pin-fin channels. The increased heat transfer rates along with the improved thermal performance factors confirm the applicability of the twisted-tape array for heat transfer enhancements.

    目錄 摘要 II Extended Abstract III 謝誌 XIX 目錄 XX 表目錄 XXII 圖目錄 XXIII 符號表 XXV 第1章 前言 1 1.1 柱鰭陣列之形狀以及排列方式 4 1.2 工作流體的種類 6 1.3 微柱鰭陣列管道 7 第2章 實驗方法 11 2.1 實驗設備 11 2.2 數據分析方法 16 第3章 數值方法 21 第4章 結果與討論 28 4.1 數值流場特徵 28 4.2 實驗結果 42 4.2.1 熱傳特性 42 4.3 壓降及熱性能 51 第5章 結論及建議 56 建議 57 參考文獻 58

    [1] S. A. Lawson, A. A.Thrift, K. A.Thole, A. Kohlib, Heat transfer from multiple row arrays of low aspect ratio pin fins, Int. J. Heat Mass Transfer, vol.54, 4099-4109, 2011.
    [2] J. K. Ostanek and K. A. Thole, Wake development in staggered short cylinder arrays within a channel, Exp Fluids, vol.53, 673–697, 2012.
    [3] J. K. Ostanek and K. A. Thole, Effect of streamwise spacing on periodic and random unsteadiness in a bundle of short cylinders confined in a channel, Exp Fluids, vol.53, 1779–1796, 2012.
    [4] F.E. Ames and L.A. Dvorak, Turbulent transport in pin fin arrays: experimental data and predictions, ASME Journal of turbomachinery, vol.128, 71-81, 2006 .
    [5] M.K. Chyu, Y.C. Hsing, T.P. Shih, V. Natarajan, Heat transfer contributions of pins and endwall in pin-fin arrays: effects of thermal boundary condition modeling, ASME Journal of Turbomachinery, vol.121, 257-263, 1999.
    [6] G. J. VanFossen, Heat-transfer coefficients for staggered arrays of short pin fins. ASME Journal of Engineering for Power, vol.104, 268-276, 1982.
    [7] M. Axtmann, R. Poser, J. von Wolfersdorf, M. Bouchez, Endwall heat transfer and pressure loss measurements in staggered arrays of adiabatic pin fins, Aoolied Thermal Engineering, vol.103, 1048-1056, 2016.
    [8] S.W. Chang, T.L. Yang, C.C. Huang, K.F. Chiang, Endwall heat transfer and pressure drop in rectangular channels with attached and detached circular pin-fin array, Int. Journal of Heat and Mass Transfer, vol.51, 5247-5259, 2008.
    [9] S. C. Siw, M. K. Chyu , T. I.-P. Shih, M. A. Alvin, Effects of pin detached space on heat transfer and pin-fin arrays, ASME J. Heat Transfer, vol.134, 081902 1-9, 2012.
    [10] K.A. Moores, J. Kim, Y.K. Joshi, Heat transfer and fluid flow in shrouded pin fin arrays with and without tip clearance, Int. J. Heat and Mass Transfer, vol.52, 5978-5989, 2009.
    [11] R.S. Jadhav, C. Balaji, Fluid flow and heat transfer characteristics of a vertical channel with detached pin-fin arrays arranged in staggered manner on two opposite endwalls, Int. J. Thermal Sciences, vol.105, 57-74, 2016.
    [12] R.J. Goldstein, S.B. Chen, Flow and mass transfer performance in short pin-fin channels with different fin shapes, Int. J. Rotating Machinery, vol.4, 113-128, 1998.
    [13] G. Tanda, Heat transfer and pressure drop in a rectangular channel with diamond-shaped elements, Int. J. Heat and Mass Transfer, vol.44, 3529-3541, 2001.
    [14] O. Uzol, C. Camci, Heat transfer, pressure loss and flow field measurements downstream of staggered two-row circular and elliptical pin-fin arrays, ASME J. Heat Transfer, vol.127, 458-471, 2005.
    [15] F. Wang, J. Zhang, S. Wang, Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins, Propulsion and Power Research, vol.1, 64-70, 2012.
    [16] H. Shafeie, O. Abouali, K.Jafarpur, G. Ahmadi, Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures, Applied Thermal Engineering, vol.58, 68-76, 2013.
    [17] J. Pandit, M. Thompson, S.V. Ekkad, S.T. Huxtable, Effect of pin fin to channel height ratio and pin fin geometry on heat transfer performance for flow in rectangular channels, Int. J. Heat Mass Transfer, vol.77, 359-368, 2014.
    [18] M.-A. Moon and K.-Y. Kim, Analysis and optimization of fan-shaped pin–fin in a rectangular cooling channel, Int. J. Heat Mass Transfer, vol.72, 148-162, 2014.
    [19] S. Caliskan, A. Dogan, I. Kotcioglu, Experimental investigation of heat transfer from different pin fin in a rectangular channel, Experimental Heat Transfer, vol.32, 376-392, 2019.
    [20] M. Rezaee, M. Khoshvaght-Aliabadi, A. A. AbbasianArani, S. H. Mazloumic, Heat transfer intensification in pin-fin heat sink by changing pin-length/longitudinal-pitch, Chemical Engineering & Processing Intensification, vol.141, 107544 1-13, 2019.
    [21] G. Liao, X. Wang, J. Li, F. Zhang, A numerical comparison of thermal performance of in-line pin–fins in a wedge duct with three kinds of coolant, Int. J. Heat and Mass Transfer, vol.77, 1033-1042, 2014.
    [22] W. Duangthongsuk and S. Wongwises, An experimental study on the thermal and hydraulic performances of nanofluids flow in a miniature circular pin fin heat sink, Experimental Thermal and Fluid Science, vol.66, 28-35, 2015.
    [23] J. F. Tullius, T. K. Tullius, Y. Bayazitoglu, Optimization of short micro pin fins in minichannels, Int. J. Heat Mass Transfer, vol.55, 3921-3932, 2012.
    [24] R. Roth, G. Lenk, K. Cobry, P. Woias, Heat transfer in freestanding microchannels with in-line and staggered pin fin structures with clearance, Int. J. Heat Mass Transfer, vol.67, 1-15, 2013.
    [25] O.O. Adewumi, T. Bello-Ochende, J.P. Meyer, Constructal design of combined microchannel and micro pin fins for electronic cooling, Int. J. Heat Mass Transfer, vol.66, 315-323, 2013.
    [26] D. Mei, X. Lou, M. Qian, Z. Yao, L. Liang, Z. Chen, Effect of tip clearance on the heat transfer and pressure drop performance in the micro-reactor with micro-pin–fin arrays at low Reynolds number, Int. J. Heat Mass Transfer, vol.70, 709-718, 2014.
    [27] A. Abdoli, G. Jimenez, G. S. Dulikravich, Thermo-fluid analysis of micro pin-fin array cooling configurations for high heat fluxes with a hot spot, Int. J. Thermal Sciences, vol.90, 290-297, 2015.
    [28] D. Yang, Z. Jin, Y. Wang, G. Ding, G. Wang, Heat removal capacity of laminar coolant flow in a micro channel heat sink with different pin fins, Int. J. Heat Mass Transfer, vol.113, 366-372, 2017.
    [29] Z. Wan and Y. Joshi , Pressure drop and heat transfer characteristics of pin fin enhanced microgaps in single phase microfluidic cooling, Int. J. Heat Mass Transfer, vol.115, 115-126, 2017.
    [30] T. Ambreen, A. Saleem, C. W. Park, Pin-fin shape-dependent heat transfer and fluid flow characteristics of water- and nanofluid-cooled micropin-fin heat sinks: Square, circular and triangular fin cross-sections, Applied Thermal Engineering, vol.158, 113781 1-15, 2019.
    [31] D.L. Gee, R.L. Webb, Forced convection heat transfer in helically rib-roughened tubes, Int. J. Heat Mass Transfer, vol.23, 1127-1135, 1980.
    [32] S.J. Kline, F.A. McClintock, Describing uncertainties in single sample experiments, Mechanical Engineering, vol.75, 3-8, 1953.
    [33] Fluent Inc. FLUENT 19.2 Ansys Help – Fluent Theory Guide, 2019.
    [34] L. Tarchi, B. Facchini, and S. Zecchi, Experimental investigation of innovative internal trailing edge cooling configurations with pentagonal arrangement and elliptic pin fin, International Journal of Rotating Machinery, vol.2008, 109120 1-10, 2008.
    [35] W. Bai, D. Liang, W. Chen, M. K. Chyu, Investigation of ribs disturbed entrance effect of heat transfer and pressure drop in pin-fin array, Applied Thermal Engineering, vol.162, 114214 1-8, 2019.
    [36] M. K. Chyu, C. H. Yen and S. Siw, Comparison of heat transfer from staggered pin fin arrays with circular, cubic and diamond shaped elements, ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, Canada May 14–17, GT2007-28306, 991-999, 2007.
    [37] S. C. Lau, J. C. Han, T. Batten, Heat transfer, pressure drop and mass-flow rate in pin fin channels with long and short trailing edge ejection holes, ASME Journal of Turbomachinery, vol.111, 116-123, 1989.

    下載圖示 校內:2023-04-05公開
    校外:2023-04-05公開
    QR CODE