| 研究生: |
施詠堯 Shin, Yung-Yao |
|---|---|
| 論文名稱: |
噴覆成型與連續鑄造6063 鋁合金之微結構、機械性質與成型性質之研究 The Study of Spray Forming and Continuously casting 6063 Aluminium Alloy: Microstructure, Machines and Forming Feature |
| 指導教授: |
曹紀元
Tsao, C.-Y.A |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 拉伸 、壓縮 、6063 、噴覆成型 |
| 外文關鍵詞: | 6063, compression, spray forming, tensile |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋁並沒有良好的鑄造或機械性質,這些性質可以利用添加鎂和矽等元素來改善這些缺點。增加這些合金元素會形成Mg2Si介金屬化合物,可以改善鑄造性、抗腐蝕性和合金的強度,並且更適合用於進一步的加工。因此基於改善6063鋁合金的成型性質,利用將鋁合金的初始晶粒縮小的方式,選擇使用噴覆成型的製程來達成此一目標。由於噴覆成型製程是屬於快速冷卻凝固的製程方式,因此析出相大多是細小且均勻分佈,與鑄造方式所製造的鋁合金大多分布在晶界且較粗大有所差異。
噴覆成型在析出物方面較均勻分佈,並且能夠排除巨觀偏析的的現象出現,而連續鑄造的鋁合金析出物是在晶界上析出,可以發現明顯的偏析現象。在時效實驗方面,噴覆成型與連續鑄造硬度的最大值出現在150℃、16小時與200℃、8小時。在高溫壓縮的實驗中,兩者都可以明顯觀察到巨觀的壓縮變形區。在機械性質方面,隨著溫度提高,降伏強度都明顯降低,隨著應變速率的提高,降伏強度隨著提高。在拉伸性質上,YS與UTS隨溫度提高而降低,隨應變速率提高而提高;在延伸率與斷面縮減率則是隨溫度提高而提高。在超塑性測試方面,兩種製程在400℃時的延伸率均高於450℃的延伸率,並且m值在400℃時是到達最大值。
In order to improve the properties of casting and mechanism behavior, Mg and Si elements had be added into aluminum. The intermetallic compound Mg2Si can improve the properties of casting, anti-corrosion and strength of alloys. By decrease initial grain size of 6063 aluminum to improve the formability of 6063 Aluminum alloy, we choice the spray forming process (SFP). Spray forming process is a faster cooling rate process, and precipitation are fine and homogenerous distribution.
The precipitate distributed homogeneously in spray forming process and to banish macrosegregation phenomenon; on the other hand, in continuously casting process (CCP), the precipitate was found at grain boundary and had apparent segregation phenomenon. In aging test, both processes had maximum hardness values at 150℃, 16 hours and 200℃, 8 hours. In hot compression test, when temperature increased or strain rate decreased, yield strength decreased. In tension test, when temperature decreased or strain rate increased, Yield strength and ultra tensile strength increased. When temperature increased and strain rate decreased, elongation and reduction of area increased. In superplastic test, both processes had larger elongation at 400℃than at 450℃, and hade maximum strain rate sensitivity (m) at 400℃.
1. C.W. Wu, R.Q. Hsu , ‘ Theoretical analysis of extrusion of rectangular , hexagonal and octagonal composite clad rods’ , International journal of Mechanical Sciences , vol. 42 , pp. 473-486 , 2000
2. Pradip K. Saha , ‘ Thermodynamics and tribology in aluminum extrusion’ , WEAR , vol. 218 , pp.179-190 , 1998
3. 黃振東 ,‘電腦散熱片材料與製程技術介紹’,工業材料雜誌,171期,3月,pp. 130~138, 2001
4. E.J. Lavernia, Yue Wu, ‘ Spray Atomization and Deposition’, John Wiley & Sons Ltd
5. W.D. Cai , J. Smugeresky , E.J. Lavernia , ‘Low-pressure spray forming of 2024 aluminum alloy ‘ , Materials Science & Engineering A , vol A241 , pp. 60-71 , 1998
6. Yu Fuxiao , Cui Jianzhong , S. Ranganathan , E.S. Dwarakadasa , ‘Fundamental differences between spray forming and other semisolid processes’ , Materials Science & Engineering A , vol.304 , pp. 621-626 , 2001
7. Lennart Backerud, Ella Krol , Jarmo Tamminen, Solidification Characteristics of Aluminium Alloys, volume 1: Wroought Alloys, Department of Structural Chemistry Arrhenius Laboratory , University of Stockholm, 1986
8. William F. Hosford, Robert M. Caddell, ‘Metal Forming, Mechanics and Metallurgy’, 1983
9. T. Sheppard, ‘Extrusion of Aluminium Alloys’, Department of Product Design and Manufacture, Boumemouth University, 1999
10. John E. Hatch, ‘Aluminum, Properties and Physical Metallurgy’, May, 1984
11. W. Roberts, “Dynamic changes that occur during hot working and their signigicance regarding microstructural development and hot workability”, Swedish Institute for Metals Research, 114 28 Stockholm, Sweden
12. J.R. Davis (ed) , ‘ Aluminum and Aluminum Alloys’ , ASM Specialty Handbook , third edition , 1994
13. O.B. Olurin , N.A. Fleck , M.F. Ashby , ‘ Deformation and fracture of aluminium foams’ , Materials Science & Engineering A , vol. 291 , pp. 136-146 , 2000
John R. Newby (ed) , ‘Volume 8 Mechanical Testing’ , Metals Handbook , ninth edition ,1985
14. J. van de Langkruis, W.H. Kool, S. van der Zwaag, ‘Assessment of consititutive equations in modeling the hot deformability of some overaged Al-Mg-Si alloys with varying solute contents’, Materials Science & Engineering A, pp.135~145, 1999
15. Y.L. Liu, S.B. Kang, H.W. Kim, ‘The complex microstructures in an as-cast Al-Mg-Si alloy’, Materials Letters, pp.267~272, 1999
16. H. Gehanno, Y. Brechet, F. Louchet and D. Bechet, ‘ Microstructure and Mechanical Properties of a 6063 Aluminium Alloy at High Temperature’, Key Engineering Materials, pp.347~352, 1994
17. L. A. Lalli and A. J. Deardo, ‘Experimental Assessment of Structure and Property Predictions during Hot Working’, Metallurgical Transactions A, volume 21A, December, 3101~3114, 1990
18. J.R. Rendon, C.V.G. Venalum Puerto Ordaz, Venezuela, ‘ Mechanical properties and microstructural characterization of the commercial aluminium alloy 5053 under different homogenizing thermal treatment’, The minerals, Metals & Materials Society, pp.291~298, 1997
19. Rafiq A. Siddiqui, Hussein A. Abdullah, Khamis R. Al-Belushi, ‘Influence of aging parameters on the mechanical properties of 6063 Al alloy’, Journal of Materials Processing Technology, pp.234~240, 2000
20. J.Y. Yao, D.A. Graham, B. Rinderer, M.J. Couper, ‘A TEM study of precipitation in Al-Mg-Si alloys’, Micron, pp.865~870, 2001
21. S.E. Urreta, F. Louchet, A. Ghilarducci, ‘Fracture behaviour of an Al-Mg-Si industrial alloy’, Materials science & Engineering A, pp. 300~307, 2001
22. E. S. Puchi, M. H. Staia, and C. Billaobos,” On the mechanical behavior of commercial-purity aluminum deformed under axisymmetric compression conditions”, International Journal of Plasticity, Vol. 13, No. 8-9, (1997), pp.723-742
23. Geoge E. Dieter, ‘Bulk Workability Testing’, Metals Handbook, Ninth Edition Volume 8
24. S.B. Davenport, R.L. Higginson, ‘Strain path effects under hot working: an introduction’, Journal of Materials Processing Technoloy, pp.267~291, 2000
25. C.Y. Xie, E. Carreno-Morelli and R. Schaller, ‘Low frequency internal friction associated with precipitation in AlMgSi alloys’, Scripta Materialia, pp.225~230, 1998
26. E.S. Puchi and M.H. Staia, ‘Mechanical behavior of aluminum deformed under hot working conditions’, Metallugical and Materials Transactions A, 1995
27. David Durban, Zvi Zuckerman, ‘Elastoplastic buckling of rectangular plates in biaxial compression/tension’, Mechanical Sciences, pp.751~765,1999
28. S.E. Urreta, F. Louchet, A. Ghilarducci, ‘Fracture behaviour of an Al-Mg-Si industrial alloy’, Materials Science & Engineering A, pp.300~307,2001
29. Stanislaw Zajac, J. Ars-otto Gullman, Anders Johansson and B.Q. Bengisson, ‘Hot ductility of some Al-Mg-Si alloys’, Materials Science Form, pp.1193~1198,1996
30. W. J. Liu, ‘A Unified Theoretical Model for Work-Hardening of Polycrystalline Metals’, Acta mater. Vol. 44, No. 6, pp.2337~2343, 1996
31. A. J. Beaudoin, A. Acharaya, S. R. Chen, D. A. Korzekwa and M. G. Stout, ‘Consideration of Grain-Size Effect and Kinetics in the Plastic Deformation of Metal Polycrystals’, Acta mater. Vol. 48, pp.3409~3423, 2000
32. Xuexing Yao, Stanislaw Zajac and Bevis Hutchinson, ‘Estimation of Compression Flow Stress From Post-Deformation Hardness in Al-Mg Alloys’, Scripta Materialia, vol. 41, No. 3, pp. 253~258, 1999
33. J. Sarkar, Y. V. K. Prasad, M. K. Surappa, ‘Optimization of Hot Workability of an Al-Mg-Si Alloy Using Processing Maps’, Journal of Materials Science, vol. 30, pp.2843~2848, 1995
34. J. M. Robinson, ‘Serrated flow in aluminium base alloys’, International Materials Reviews, Vol. 39, No. 6, pp.217~227, 1994
35. J. D. Campbell, ‘Dynamic Plasticity:Macroscopic and Microscopic Aspects’, Materials Science and Engineering, No. 12, pp.3~21, 1973