簡易檢索 / 詳目顯示

研究生: 施詠堯
Shin, Yung-Yao
論文名稱: 噴覆成型與連續鑄造6063 鋁合金之微結構、機械性質與成型性質之研究
The Study of Spray Forming and Continuously casting 6063 Aluminium Alloy: Microstructure, Machines and Forming Feature
指導教授: 曹紀元
Tsao, C.-Y.A
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 97
中文關鍵詞: 拉伸壓縮6063噴覆成型
外文關鍵詞: 6063, compression, spray forming, tensile
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋁並沒有良好的鑄造或機械性質,這些性質可以利用添加鎂和矽等元素來改善這些缺點。增加這些合金元素會形成Mg2Si介金屬化合物,可以改善鑄造性、抗腐蝕性和合金的強度,並且更適合用於進一步的加工。因此基於改善6063鋁合金的成型性質,利用將鋁合金的初始晶粒縮小的方式,選擇使用噴覆成型的製程來達成此一目標。由於噴覆成型製程是屬於快速冷卻凝固的製程方式,因此析出相大多是細小且均勻分佈,與鑄造方式所製造的鋁合金大多分布在晶界且較粗大有所差異。
    噴覆成型在析出物方面較均勻分佈,並且能夠排除巨觀偏析的的現象出現,而連續鑄造的鋁合金析出物是在晶界上析出,可以發現明顯的偏析現象。在時效實驗方面,噴覆成型與連續鑄造硬度的最大值出現在150℃、16小時與200℃、8小時。在高溫壓縮的實驗中,兩者都可以明顯觀察到巨觀的壓縮變形區。在機械性質方面,隨著溫度提高,降伏強度都明顯降低,隨著應變速率的提高,降伏強度隨著提高。在拉伸性質上,YS與UTS隨溫度提高而降低,隨應變速率提高而提高;在延伸率與斷面縮減率則是隨溫度提高而提高。在超塑性測試方面,兩種製程在400℃時的延伸率均高於450℃的延伸率,並且m值在400℃時是到達最大值。

    In order to improve the properties of casting and mechanism behavior, Mg and Si elements had be added into aluminum. The intermetallic compound Mg2Si can improve the properties of casting, anti-corrosion and strength of alloys. By decrease initial grain size of 6063 aluminum to improve the formability of 6063 Aluminum alloy, we choice the spray forming process (SFP). Spray forming process is a faster cooling rate process, and precipitation are fine and homogenerous distribution.

    The precipitate distributed homogeneously in spray forming process and to banish macrosegregation phenomenon; on the other hand, in continuously casting process (CCP), the precipitate was found at grain boundary and had apparent segregation phenomenon. In aging test, both processes had maximum hardness values at 150℃, 16 hours and 200℃, 8 hours. In hot compression test, when temperature increased or strain rate decreased, yield strength decreased. In tension test, when temperature decreased or strain rate increased, Yield strength and ultra tensile strength increased. When temperature increased and strain rate decreased, elongation and reduction of area increased. In superplastic test, both processes had larger elongation at 400℃than at 450℃, and hade maximum strain rate sensitivity (m) at 400℃.

    總目錄 中文摘要 …………………………………………………………Ⅴ Abstract …………………………………………………………Ⅵ 致謝 ……………………….………………………………………Ⅶ 總目錄 …………………………………………………………Ⅷ 表目錄 ……………………………………………………………Ⅰ 圖目錄 ………………………………………………………… …Ⅱ 第一章 前言 …………………………………………………… 1 第二章 理論基礎 ……………………………………………… 3 2.1噴覆成型理論……………………………………………….3 2.2金屬機械性質理論………………………………………….5 2.3合金成分對於機械性質的影響…………………………….8 2.4析出物的型態 …………………………………………8 2. 5 動態應變時效……………………………………………….9 第三章 實驗方法 ………………………………………………11 1. 實驗材料 …………………………………………………..12 2. 噴覆成型製程 ……………………………………………..12 3. 噴覆成型材料相鑑定與成分分析 ………………………..12 4. 時效分析 …………………………………………………..13 5. 擠型製程 …………………………………………………..13 6. 熱壓縮實驗 ………………………………………………..13 7. 拉伸實驗 …………………………………………………..14 8. 超塑性實驗 ………………………………………………..15 9. 研磨方案……………………………………………………..15 第四章 結果與討論 ……………………………………………16 1. 顯微結構分析 …………………………………………….16 2. 時效處理 ………………………………………………..18 2.1 時效與硬度…………………………………………………..18 2.2顯微組織探討………………………………………………..19 3. 熱壓縮實驗 ……………………………………………..19 3.1金相觀察 …………………………………………………..20 3.2 溫度影響 …………………………………………………..21 3.3 應變速率因素 ……………………………………………..21 3.4材料因素 …………………………………………………..23 3.5 應變量與應變路徑 ………………………………………..23 4. 拉伸測試 ……………………………………………….24 4.1溫度影響 ……………………………………………………25 4.2 應變速率影響 ………………………………………………26 4.3 材料影響 ……………………………………………………27 5 超塑性測試 …………………………………………………..28 5.1 溫度影響 ……………………………………………………28 5.2 應變速率的影響 …………………………………………..29 5.3材料的影響 ………………………………………………….29 5.4 m值的計算 ………………………………………………….30 第五章 結論 …………………………………………………….……31 第六章 參考文獻………………………………………………………..33 表目錄 Table 1 Chemical composition of Continue casting and Spray-formed 6063 Al alloys Ⅰ Table 2 Process parameters of Spray Forming 6063 Al alloy Ⅰ Table 3 Testing parameters of solid solution experiment for spray forming and continuous casting 6063 Al alloys Ⅱ Table 4 Testing parameters of aging treatment for spray forming and continuous cast 6063 Al alloys Ⅱ Table 5 Testing parameters of hot compress test on 6063 Al alloys Ⅲ Table 6 Testing parameters of tensile test on 6063 Al alloys Ⅲ Table 7 Peak hardness of aging test on spray-formed and continuously cast 6063 Al Ⅳ Table 8 Temperature vs. specimen location on Gleeble testing Ⅳ Table 9 Testing parameters of superplastic test on 6063 Al alloys Ⅴ Table 10 Porosity of R116 6063 Al alloy for different location Ⅴ 圖目錄 Fig. 1 The illustration of spray form process 1 Fig. 2 (a) Dimension of ageing test specimens, (b) Dimension of hot pressing specimens showing mark dimension and position 2 Fig. 3 Dimension of tensile test and superplastic test specimens 3 Fig. 4 Photo of spray forming 6063 Al alloy 4 Fig. 5 Cross section image of spray forming 6063 Al alloy (OM) 5 Fig. 6 Cross section image of spray forming 6063 Al alloy (OM) 6 Fig 7 Cross section image of spray forming 6063 Al alloy (OM) 7 Fig. 8 Micrographic of spray forming and continuously cast 6063 Al alloy (SEM) 8 Fig. 9 DSC analysis of continuously cast and spray-formed 6063 Al alloys 9 Fig. 10 X-ray analysis for continuously cast and spray forming 6063 Al alloys 10 Fig. 11 EDS analysis for spray-formed and continuously cast 6063 Al alloys 11 Fig. 12 EDS analysis at point A at Fig. 11(a) 12 Fig. 13 Micrographic of spray forming and continuously cast 6063 Al alloy after extrusion process (SEM) 13 Fig. 14 Hardness vs. solutionizing time for spray-formed-extruded (SFE) and continuously cast extruded (CCE) 6063 Al alloys 14 Fig. 15 Hardness vs. ageing time for spray-formed-extruded (SFE) and continuously cast extruded (CCE) 6063 Al alloys 15 Fig. 16 SEM images of solid solution treatment on (a) spray-formed-extruded (SFE) and (b) continuously cast extruded (CCE) 6063 Al alloys 16 Fig. 17 SEM images of aging test at 150℃ holding 16 hours on (a) spray-formed extruded (SFE) and (b) continuously cast extruded (CCE) 6063 Al alloys 17 Fig. 18 Equivalent stress vs. equivalent strain on continuously cast extruded 6063 Al alloy hot pressed at 350℃ at initial strain rate of 2 s-1 18 Fig. 19 Equivalent stress vs. equivalent strain on spray-formed-extruded 6063 Al alloy hot pressed at 350℃ at initial strain rate of 2 s-1 19 Fig. 20 Equivalent stress vs. equivalent strain on continuously cast extruded 6063 Al alloy hot pressed at 450℃ at initial strain rate of 2 s-1 20 Fig. 21 Equivalent stress vs. equivalent strain on spray-formed-extruded 6063 Al alloy hot pressed at 450℃ at initial strain rate of 2 s-1 21 Fig. 22 Equivalent stress vs. equivalent strain on continuously cast extruded 6063 Al alloy hot pressed at 350℃ at initial strain rate of 0.2 s-1 22 Fig. 23 Equivalent stress vs. equivalent strain on spray-formed-extruded 6063 Al alloy hot pressed at 350℃ at initial strain rate of 0.2 s-1 23 Fig. 24 Equivalent stress vs. equivalent strain on continuous cast extruded 6063 Al alloy hot pressed at 450℃ at initial strain rate of 0.2 s-1 24 Fig. 25 Equivalent stress vs. equivalent strain spray-formed-extruded 6063 Al alloy hot pressed at 450℃ at initial strain rate of 0.2 s-1 25 Fig. 26 Equivalent stress vs. equivalent strain continuously cast extruded 6063 Al alloy hot pressed at 350℃ at initial strain rate of 0.02 s-1 26 Fig. 27 Equivalent stress vs. equivalent strain spray-formed-extruded 6063 Al alloy hot pressed at 350℃ at initial strain rate of 0.02 s-1 27 Fig. 28 Equivalent stress vs. equivalent strain continuous cast extruded 6063 Al alloy hot pressed at 450℃ at initial strain rate of 0.02 s-1 28 Fig. 29 Equivalent stress vs. equivalent strain spray-formed-extruded 6063 Al alloy hot pressed at 450℃ at initial strain rate of 0.02 s-1 .29 Fig. 30 Equivalent stress vs. equivalent strain continuously cast extruded 6063 alloy hot pressed form R.T. to 250℃ at initial strain rate of 2 s-1, strain = 1.4 30 Fig. 31 Yield strength for continuously cast extruded and spray-formed-extruded 6063 Al alloys 31 Fig. 32 Equivalent stress vs. equivalent strain for continuously cast extruded 6063 Al (select strain 1.0) 32 Fig. 33 Equivalent stress vs. equivalent strain for spray-formed-extruded 6063 Al (select strain 1.0) 33 Fig. 34 Equivalent stress vs. equivalent strain for spray-formed-extruded and continuously cast extruded 6063 Al (select strain 1.0) at strain rate 0.02 34 Fig.35 Equivalent stress vs. equivalent strain for spray-formed-extruded and continuously cast extruded 6063 Al (select strain 1.0) at strain rate 0.2 35 Fig.36 Equivalent stress vs. equivalent strain for spray-formed-extruded and continuously cast extruded 6063 Al (select strain 1.0) at strain rate 2 36 Fig.37 Equivalent stress vs. equivalent strain for spray-formed-extruded and continuously cast extruded6063 Al (select strain 1.0) at temperature 350 ℃ 37 Fig.38 Equivalent stress vs. equivalent strain for spray-formed-extruded and continuously cast extruded6063 Al (select strain 1.0) at temperature 450 ℃ 38 Fig.39 Strain rate sensitivity (m) value vs. temperature for continuously cast extruded and spray-formed-extruded 6063 Al alloys. (Strain 1.0) 39 Fig.40 Image of hot pressing test on spray-formed-extruded (SFE) 6063 Al alloys. (Temperature 450℃, initial strain rate=2s-1) 40 Fig.41 Image of hot pressing test on continuously cast extruded (CCE) 6063 Al alloys. (Temperature 450℃, initial strain rate=2s-1) 41 Fig.42 Morphology of hot pressing specimens for continuously cast extruded 6063 Al alloys at strain rate 2s-1. 42 Fig.43 Morphology of hot pressing specimens for continuously cast extruded 6063 Al alloys at strain rate 0.2s-1. 43 Fig.44 Morphology of hot pressing specimens for continuously cast extruded 6063 Al alloys at strain rate 0.02s-1. 44 Fig.45 Morphology of hot pressing specimens for spray-formed-extruded 6063 Al Alloys at strain rate 2s-1. 45 Fig.46 Morphology of hot pressing specimens for spray-formed-extruded 6063 Al Alloys at strain rate 0.2s-1. 46 Fig.47 Morphology of hot pressing specimens for spray-formed-extruded 6063 Al Alloys at strain rate 0.02s-1. 47 Fig.48 Three zones on specimens of hot pressing 48 Fig.49 Deformation patterns in nonlubricated, isothernal hot forging, (a) initial barreling, (b) barreling and folding over. (c) Beginning of end-face expansion. 49 Fig.50 H/D ratio of square mark on continuously cast extruded (CCE) and spray-formed-extruded (SFE) 6063 Al alloys hot pressed at initial strain rate of 2 s-1 for various hot pressing temperatures 50 Fig.51 H/D ratio of square mark on continuously cast extruded (CCE) and spray-formed-extruded (SFE) 6063 Al alloys hot pressed at initial strain rate of 0.2 s-1 for various hot pressing temperatures 51 Fig.52 H/D ratio of square mark on continuously cast extruded (CCE) and spray-formed-extruded (SFE) 6063 Al alloys hot pressed at initial strain rate of 0.02 s-1 for various hot pressing temperatures 52 Fig.53 Strain path of continuously cast extruded and spray-formed-extruded 6063 Al alloy at initial strain rate 2s-1. 53 Fig.54 Strain path of continuously cast extruded and spray-formed-extruded 6063 Al alloy at initial strain rate 0.2s-1. 54 Fig.55 Strain path of continuously cast extruded and spray-formed-extruded 6063 Al alloy at initial strain rate 0.02s-1. 55 Fig.56 Photos for continuously cast extruded and spray-formed-extruded 6063 Al Alloys at 450℃, strain rate=0.3, strain=1.0(SEM) 56 Fig.57 Photos of continuously cast extruded and spray-formed-extruded 6063 Al (SEM) (closer) 57 Fig.58 True stress vs. true strain curve on R.T. for spray-formed-extruded 6063 Al alloy 58 Fig.59 True stress vs. true strain curve on 150℃ for spray-formed-extruded 6063 Al alloy 59 Fig.60 True stress vs. true strain curve on 250℃ for spray-formed-extruded 6063 Al alloy 60 Fig.61 True stress vs. true strain curve on 350℃ for spray-formed-extruded 6063 Al alloy 61 Fig.62 True stress vs. true strain curve on R.T. for continuously cast extruded 6063 Al alloy 62 Fig.63 True stress vs. true strain curve on 150℃ for continuously cast extruded 6063 Al alloy 63 Fig.64 True stress vs. true strain curve on 250℃ for continuously cast extruded 6063 Al alloy 64 Fig.65 True stress vs. true strain curve on 350℃ for continuously cast extruded 6063 Al alloy 65 Fig.66 The stress-strain curve of continuously cast 6063 Al alloy at temperature 150℃ 66 Fig.67 The Stress-Strain curve of spray-formed 6063 Al alloy at temperature 150℃ 67 Fig.68 The Stress-Strain curve of continuously cast 6063 Al alloy at temperature 250℃ 68 Fig.69 The Stress-Strain curve of spray-formed 6063 Al alloy at temperature 250℃ 69 Fig.70 The Stress-Strain curve of continuously cast 6063 Al alloy at temperature 350℃ 70 Fig.71 The Stress-Strain curve of spray-formed 6063 Al alloy at temperature 350℃ 71 Fig.72 UTS vs. testing temperature of spray-formed-extruded and continuously cast extruded 6063 Al alloys tensile test 72 Fig 73 YS vs. testing temperature of spray-formed-extruded and continuously cast extruded 6063 Al alloys tensile test 73 Fig.74 Elongation vs. testing temperature of spray-formed-extruded and continuously cast extruded 6063 Al alloys tensile 74 Fig.75 Area reduce vs. testing temperature of spray-formed-extruded and continuously cast extruded 6063 Al alloys tensile test 75 Fig.76 n value for continuously cast and spray-formed 6063 Al alloy on tensile test 76 Fig.77 m value for continuously cast extruded and spray-formed-extruded 6063 Al alloy 77 Fig.78 Tensile fracture of spray-formed-extruded (SFE), (SEM) 78 Fig.79 Tensile fracture of continuously cast extruded 6063 Al (CCE), (SEM) 79 Fig.80 Tensile fracture of spray-formed-extruded (SFE), (SEM) 80 Fig.81 Tensile fracture of continuously cast extruded 6063 Al (CCE), (SEM) 81 Fig.82 Fracture morphology of cross section for spray-formed-extruded 6063 Al alloy 82 Fig.83 True stress vs. true strain curve on 350℃ for spray-formed-extruded and continuously cast extruded 6063 Al alloy 83 Fig.84 True stress vs. true strain curve on 400℃ for spray-formed-extruded and continuously cast extruded 6063 Al alloy 84 Fig.85 True stress vs. true strain curve on 450℃ for spray-formed-extruded and continuously cast extruded 6063 Al alloy 85 Fig.86 True stress vs. true strain curve of continuously cast extruded 6063 Al alloy 86 Fig.87 True stress vs. true strain curve of spray-formed-extruded 6063 Al alloy 87 Fig.88 True stress vs. true strain curve of spray-formed-extruded and continuously cast extruded 6063 Al alloy at strain rate 0.02 m-1 88 Fig.89 True stress vs. true strain curve of spray-formed-extruded and continuously cast extruded 6063 Al alloy at strain rate 0.002 m-1 89 Fig.90 True stress vs. true strain curve of spray-formed-extruded and continuously cast extruded 6063 Al alloy at strain rate 0.0002m-1 90 Fig.91 UTS vs. testing temperature of continuous cast extruded and spray-formed-extruded 6063 Al alloy tensile test at various strain rate 91 Fig.92 YS vs. testing temperature of continuous cast extruded and spray-formed-extruded 6063 Al alloy tensile test at various strain rate 92 Fig.93 Elongation (%) vs. testing temperature of continuous cast extruded and spray-formed-extruded 6063 Al alloy tensile test at various strain rate 93 Fig.94 Area reduction (%) vs. testing temperature of continuous cast extruded and spray-formed-extruded 6063 Al alloy tensile test at various initial strain rate 94 Fig.95 Strain rate sensitivity vs. temperature for spray-formed-extruded and continuously cast extruded 6063 Al alloys 95 Fig.96 Image of cross section on superplastic test for spray-formed-extruded (SFE) and continuously cast extruded (CCE) 60603 Al alloys 96 Fig.97 Image of cross section (closer) on superplastic test for spray-formed-extruded (SFE) and continuously cast extruded (CCE) 60603 Al alloys 97

    1. C.W. Wu, R.Q. Hsu , ‘ Theoretical analysis of extrusion of rectangular , hexagonal and octagonal composite clad rods’ , International journal of Mechanical Sciences , vol. 42 , pp. 473-486 , 2000
    2. Pradip K. Saha , ‘ Thermodynamics and tribology in aluminum extrusion’ , WEAR , vol. 218 , pp.179-190 , 1998
    3. 黃振東 ,‘電腦散熱片材料與製程技術介紹’,工業材料雜誌,171期,3月,pp. 130~138, 2001
    4. E.J. Lavernia, Yue Wu, ‘ Spray Atomization and Deposition’, John Wiley & Sons Ltd
    5. W.D. Cai , J. Smugeresky , E.J. Lavernia , ‘Low-pressure spray forming of 2024 aluminum alloy ‘ , Materials Science & Engineering A , vol A241 , pp. 60-71 , 1998
    6. Yu Fuxiao , Cui Jianzhong , S. Ranganathan , E.S. Dwarakadasa , ‘Fundamental differences between spray forming and other semisolid processes’ , Materials Science & Engineering A , vol.304 , pp. 621-626 , 2001
    7. Lennart Backerud, Ella Krol , Jarmo Tamminen, Solidification Characteristics of Aluminium Alloys, volume 1: Wroought Alloys, Department of Structural Chemistry Arrhenius Laboratory , University of Stockholm, 1986
    8. William F. Hosford, Robert M. Caddell, ‘Metal Forming, Mechanics and Metallurgy’, 1983
    9. T. Sheppard, ‘Extrusion of Aluminium Alloys’, Department of Product Design and Manufacture, Boumemouth University, 1999
    10. John E. Hatch, ‘Aluminum, Properties and Physical Metallurgy’, May, 1984
    11. W. Roberts, “Dynamic changes that occur during hot working and their signigicance regarding microstructural development and hot workability”, Swedish Institute for Metals Research, 114 28 Stockholm, Sweden
    12. J.R. Davis (ed) , ‘ Aluminum and Aluminum Alloys’ , ASM Specialty Handbook , third edition , 1994
    13. O.B. Olurin , N.A. Fleck , M.F. Ashby , ‘ Deformation and fracture of aluminium foams’ , Materials Science & Engineering A , vol. 291 , pp. 136-146 , 2000
    John R. Newby (ed) , ‘Volume 8 Mechanical Testing’ , Metals Handbook , ninth edition ,1985
    14. J. van de Langkruis, W.H. Kool, S. van der Zwaag, ‘Assessment of consititutive equations in modeling the hot deformability of some overaged Al-Mg-Si alloys with varying solute contents’, Materials Science & Engineering A, pp.135~145, 1999
    15. Y.L. Liu, S.B. Kang, H.W. Kim, ‘The complex microstructures in an as-cast Al-Mg-Si alloy’, Materials Letters, pp.267~272, 1999
    16. H. Gehanno, Y. Brechet, F. Louchet and D. Bechet, ‘ Microstructure and Mechanical Properties of a 6063 Aluminium Alloy at High Temperature’, Key Engineering Materials, pp.347~352, 1994
    17. L. A. Lalli and A. J. Deardo, ‘Experimental Assessment of Structure and Property Predictions during Hot Working’, Metallurgical Transactions A, volume 21A, December, 3101~3114, 1990
    18. J.R. Rendon, C.V.G. Venalum Puerto Ordaz, Venezuela, ‘ Mechanical properties and microstructural characterization of the commercial aluminium alloy 5053 under different homogenizing thermal treatment’, The minerals, Metals & Materials Society, pp.291~298, 1997
    19. Rafiq A. Siddiqui, Hussein A. Abdullah, Khamis R. Al-Belushi, ‘Influence of aging parameters on the mechanical properties of 6063 Al alloy’, Journal of Materials Processing Technology, pp.234~240, 2000
    20. J.Y. Yao, D.A. Graham, B. Rinderer, M.J. Couper, ‘A TEM study of precipitation in Al-Mg-Si alloys’, Micron, pp.865~870, 2001
    21. S.E. Urreta, F. Louchet, A. Ghilarducci, ‘Fracture behaviour of an Al-Mg-Si industrial alloy’, Materials science & Engineering A, pp. 300~307, 2001
    22. E. S. Puchi, M. H. Staia, and C. Billaobos,” On the mechanical behavior of commercial-purity aluminum deformed under axisymmetric compression conditions”, International Journal of Plasticity, Vol. 13, No. 8-9, (1997), pp.723-742
    23. Geoge E. Dieter, ‘Bulk Workability Testing’, Metals Handbook, Ninth Edition Volume 8
    24. S.B. Davenport, R.L. Higginson, ‘Strain path effects under hot working: an introduction’, Journal of Materials Processing Technoloy, pp.267~291, 2000
    25. C.Y. Xie, E. Carreno-Morelli and R. Schaller, ‘Low frequency internal friction associated with precipitation in AlMgSi alloys’, Scripta Materialia, pp.225~230, 1998
    26. E.S. Puchi and M.H. Staia, ‘Mechanical behavior of aluminum deformed under hot working conditions’, Metallugical and Materials Transactions A, 1995
    27. David Durban, Zvi Zuckerman, ‘Elastoplastic buckling of rectangular plates in biaxial compression/tension’, Mechanical Sciences, pp.751~765,1999
    28. S.E. Urreta, F. Louchet, A. Ghilarducci, ‘Fracture behaviour of an Al-Mg-Si industrial alloy’, Materials Science & Engineering A, pp.300~307,2001
    29. Stanislaw Zajac, J. Ars-otto Gullman, Anders Johansson and B.Q. Bengisson, ‘Hot ductility of some Al-Mg-Si alloys’, Materials Science Form, pp.1193~1198,1996
    30. W. J. Liu, ‘A Unified Theoretical Model for Work-Hardening of Polycrystalline Metals’, Acta mater. Vol. 44, No. 6, pp.2337~2343, 1996
    31. A. J. Beaudoin, A. Acharaya, S. R. Chen, D. A. Korzekwa and M. G. Stout, ‘Consideration of Grain-Size Effect and Kinetics in the Plastic Deformation of Metal Polycrystals’, Acta mater. Vol. 48, pp.3409~3423, 2000
    32. Xuexing Yao, Stanislaw Zajac and Bevis Hutchinson, ‘Estimation of Compression Flow Stress From Post-Deformation Hardness in Al-Mg Alloys’, Scripta Materialia, vol. 41, No. 3, pp. 253~258, 1999
    33. J. Sarkar, Y. V. K. Prasad, M. K. Surappa, ‘Optimization of Hot Workability of an Al-Mg-Si Alloy Using Processing Maps’, Journal of Materials Science, vol. 30, pp.2843~2848, 1995
    34. J. M. Robinson, ‘Serrated flow in aluminium base alloys’, International Materials Reviews, Vol. 39, No. 6, pp.217~227, 1994
    35. J. D. Campbell, ‘Dynamic Plasticity:Macroscopic and Microscopic Aspects’, Materials Science and Engineering, No. 12, pp.3~21, 1973

    下載圖示 校內:立即公開
    校外:2003-07-04公開
    QR CODE