研究生: |
蕭郁達 Hsiao, Yu-Da |
---|---|
論文名稱: |
以類神經網路之漸進式學習方法開發胺系碳捕捉之熱力學及製程模型 Development of Thermodynamic and Process Models for Amine-Based Carbon Capture by Progressive Learning Methods of Artificial Neural Networks |
指導教授: |
張珏庭
Chang, Chuei-Tin |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 207 |
中文關鍵詞: | 碳捕捉 、胺洗滌製程 、類神經網絡 、漸進式學習 、醇胺水溶液 、汽液平衡 |
外文關鍵詞: | Carbon capture, Amine scrubbing process, Artificial neural networks, Progressive learning, Aqueous alkanolamine solutions, Vapor liquid equilibrium |
相關次數: | 點閱:86 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胺洗滌製程是一種具有潛力的燃燒後碳捕捉方法,然而大量操作能耗限制其商業化可能性。為分析及改良製程性能,熱力學及製程層面之工程問題顯然需要更進階之解決方案。在實際工程應用框架中採用代理模型已被證明可有效減輕高保真模型之高計算成本問題。然而,由於嚴謹胺洗滌製程模型收斂速度十分緩慢,使得透過模擬收集足量建模樣本仍所費不貲。另一方面,由於摻配不同醇胺溶劑是提升碳捕捉效率之有效方法,因此精準預測二氧化碳於醇胺水溶液之汽液平衡行為係分析摻配配方之技術發展重點。然而,建立可靠模型亦需收集大量平衡溶解度實驗數據,且傳統模型之參數適用範圍一般較為侷限,故有必要開發可減輕數據量或提升模型性能之方法。
本研究開發多種基於類神經網絡漸進式學習之熱力學或製程建模策略,以期可有效減少所需樣本數量並提升模型預測性能。首先,漸進合成法係透過整合「程序合成」及「漸進式學習」之概念,簡化高保真模擬流程以減少計算時間;結果顯示該法可減少約23至64%數據收集時間,而模型預測誤差則減少14至40%。多步擴展法則將既有模型進行多步參數擴充;數值實驗結果顯示,總數據收集時間可以節省超過47%,且模型具物理可解釋性。此外,聯合增量學習法則透過多個單溶劑模型之聯合增量學習,可以顯著減少二氧化碳於醇胺混合物中之平衡溶解度之預測誤差達68%。
Although amine scrubbing process is a promising option for post-combustion carbon capture, the high energy consumption for operation still hinders its commercialization. To analyze and improve the process performance of this technology, thermodynamic and process-level engineering issues must be addressed more thoroughly. From the macroscopic view, the first-principle models have usually adopted for rigorous simulations. However, the computational burdens of using these high-fidelity models in realistic engineering applications are often overwhelming. This shortcoming inevitably leads to construct simpler surrogate models to alleviate the computation efforts. However, since the simulation of the amine scrubbing processes are complex and the convergence speed is slow, high computational cost is still inevitable for acquisition of sufficient modeling samples through the first-principles simulation runs. On the other hand, on the thermodynamic level, blending alkanolamine solvents is an effective method to improve carbon capture efficiency, and the vapor-liquid equilibrium (VLE) behavior of carbon dioxide in aqueous alkanolamine solution is critical for analyzing the blending formula. However, constructing reliable models requires collecting a large amount of experimental data of equilibrium solubility, and the applicable range of parameters of conventional models is generally limited. Therefore, it is necessary to develop methods that can reduce the amount of data or improve model performance.
In this study, several thermodynamic or process modeling strategies based on progressive learning of artificial neural networks were developed to effectively reduce the required number of samples and enhance the model prediction performances. The progressive synthesis method integrates the concepts of process synthesis and progressive learning by simplifying the flowsheets of high-fidelity simulations for effective reduction of computation efforts. The results showed that the data acquisition time can be reduced by 23 to 64%, and the model prediction errors can be reduced by 14 to 40%. The multi-step expansion approach expands the architectures of existing models and capacity of parameters in step-wise manners. The experimental results show that the total data acquisition time can be saved by more than 47%, and the model prediction performance can also be significantly improved. The joint incremental learning method significantly improves the prediction performance of the equilibrium solubility of carbon dioxide in alkanolamine mixtures through joint incremental learning of single-solvent models.
Aboudheir, A., Tontiwachwuthikul, P., Chakma, A., & Idem, R. (2003). Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions. Chemical Engineering Science, 58(23-24), 5195-5210.
Abu-Zahra, M. R., Schneiders, L. H., Niederer, J. P., Feron, P. H., & Versteeg, G. F. (2007). CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine. International Journal of Greenhouse Gas Control, 1(1), 37-46.
Agbonghae, E. O., Hughes, K. J., Ingham, D. B., Ma, L., & Pourkashanian, M. (2014). Optimal process design of commercial-scale amine-based CO2 capture plants. Industrial & Engineering Chemistry Research, 53(38), 14815-14829.
Ahn, H., Luberti, M., Liu, Z., & Brandani, S. (2013). Process configuration studies of the amine capture process for coal-fired power plants. International Journal of Greenhouse Gas Control, 16, 29-40.
Amrollahi, Z., Ystad, P. A. M., Ertesvåg, I. S., & Bolland, O. (2012). Optimized process configurations of post-combustion CO2 capture for natural-gas-fired power plant–Power plant efficiency analysis. International Journal of Greenhouse Gas Control, 8, 1-11.
Alarie, S., Audet, C., Gheribi, A. E., Kokkolaras, M., & Le Digabel, S. (2021). Two decades of blackbox optimization applications. EURO Journal on Computational Optimization, 9, 100011.
Alie, C., Backham, L., Croiset, E., & Douglas, P. L. (2005). Simulation of CO2 capture using MEA scrubbing: A flowsheet decomposition method. Energy Conversion and Management, 46(3), 475-487.
Álvarez, A., Bansode, A., Urakawa, A., Bavykina, A. V., Wezendonk, T. A., Makkee, M., Gascon, J., & Kapteijn, F. (2017). Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chemical Reviews, 117(14), 9804-9838.
Aronu, U. E., Gondal, S., Hessen, E. T., Haug-Warberg, T., Hartono, A., Hoff, K. A., & Svendsen, H. F. (2011). Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120°C and model representation using the extended UNIQUAC framework. Chemical Engineering Science, 66(24), 6393-6406.
Aroua, M. K., & Mohd Salleh, R. (2004). Solubility of CO2 in aqueous piperazine and its modeling using the Kent‐Eisenberg approach. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 27(1), 65-70.
Austgen, D. M., Rochelle, G. T., & Chen, C. C. (1991). Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems. 2. Representation of hydrogen sulfide and carbon dioxide solubility in aqueous MDEA and carbon dioxide solubility in aqueous mixtures of MDEA with MEA or DEA. Industrial & Engineering Chemistry Research, 30(3), 543-555.
Bai, Z., Li, F., Zhang, J., Oko, E., Wang, M., Xiong, Z., & Huang, D. (2016). Modelling of a post-combustion CO2 capture process using bootstrap aggregated extreme learning machines. Computer Aided Chemical Engineering (Vol. 38, pp. 2007-2012).
Bartolome, P. S., & Van Gerven, T. (2022). A comparative study on Aspen Hysys interconnection methodologies. Computers & Chemical Engineering, 162, 107785.
Benamor, A., & Aroua, M. K. (2005). Modeling of CO2 solubility and carbamate concentration in DEA, MDEA and their mixtures using the Deshmukh–Mather model. Fluid Phase Equilibria, 231(2), 150-162.
Bi, K., Beykal, B., Avraamidou, S., Pappas, I., Pistikopoulos, E. N., & Qiu, T. (2020). Integrated modeling of transfer learning and intelligent heuristic optimization for a steam cracking process. Industrial & Engineering Chemistry Research, 59(37), 16357-16367.
Bilai, Pant, M., Zaheer, H., Garcia-Hernandez, L., & Abraham, A. (2020). Differential Evolution: A review of more than two decades of research. Engineering Applications of Artificial Intelligence, 90, 103479.
Bhosekar, A., & Ierapetritou, M. (2018). Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Computers & Chemical Engineering, 108, 250-267.
Blauwhoff, P. M. M., Versteeg, G. F., & Van Swaaij, W. P. M. (1983). A study on the reaction between CO2 and alkanolamines in aqueous solutions. Chemical Engineering Science, 38(9), 1411-1429.
Borhani, T. N., & Wang, M. (2019). Role of solvents in CO2 capture processes: The review of selection and design methods. Renewable and Sustainable Energy Reviews, 114, 109299.
Böttger, A., Ermatchkov, V., & Maurer, G. (2009). Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine in the high gas loading region. Journal of Chemical & Engineering Data, 54(6), 1905-1909.
Bougie, F., & Iliuta, M. C. (2011). CO2 absorption in aqueous piperazine solutions: experimental study and modeling. Journal of Chemical & Engineering Data, 56(4), 1547-1554.
Brúder, P., Grimstvedt, A., Mejdell, T., & Svendsen, H. F. (2011). CO2 capture into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol. Chemical Engineering Science, 66(23), 6193-6198.
Caballero, J. A., & Grossmann, I. E. (2008). An algorithm for the use of surrogate models in modular flowsheet optimization. AIChE Journal, 54(10), 2633-2650.
Caplow, M. (1968). Kinetics of carbamate formation and breakdown. Journal of the American Chemical Society, 90(24), 6795-6803.
Chakma, A., & Meisen, A. (1987). Solubility of carbon dioxide in aqueous methyldiethanolamine and N, N-bis (hydroxyethyl) piperazine solutions. Industrial & Engineering Chemistry Research, 26(12), 2461-2466.
Chakma, A., & Meisen, A. (1990). Improved Kent-Eisenberg model for predicting CO2 solubilities in aqueous diethanolamine (DEA) solutions. Gas Separation & Purification, 4(1), 37-40.
Chen, G., Luo, X., Zhang, H., Fu, K., Liang, Z., Rongwong, W., Tontiwachwuthikul, P., & Idem, R. (2015a). Artificial neural network models for the prediction of CO2 solubility in aqueous amine solutions. International Journal of Greenhouse Gas Control, 39, 174-184.
Chen, T., Goodfellow, I., & Shlens, J. (2015b). Net2net: Accelerating learning via knowledge transfer. arXiv preprint arXiv:1511.05641.
Cheng, Y., Yu, F. X., Feris, R. S., Kumar, S., Choudhary, A., & Chang, S. F. (2015). An exploration of parameter redundancy in deep networks with circulant projections. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2857-2865).
Choi, B. K., Kim, S. M., Lee, J. S., Park, Y. C., Chun, D. H., Shin, H. Y., Sung, H. J., Min, B. M., & Moon, J. H. (2020). Effect of blending ratio and temperature on CO2 solubility in blended aqueous solution of monoethanolamine and 2-amino-2-methyl-propanol: Experimental and modeling study using the electrolyte nonrandom two-liquid model. ACS Omega, 5(44), 28738-28748.
Choi, B. K., Kim, S. M., Kim, K. M., Lee, U., Choi, J. H., Lee, J. S., Baek, I. H., Nam, S. C., & Moon, J. H. (2021). Amine blending optimization for maximizing CO2 absorption capacity in a diisopropanolamine–methyldiethanolamine–H2O system using the electrolyte UNIQUAC model. Chemical Engineering Journal, 419, 129517.
Chollet, F. (2015). Keras. https://keras.io
Chollet, F. (2021). Deep learning with Python. Simon and Schuster.
Chuang, Y. C., Chen, T., Yao, Y., & Wong, D. S. H. (2018). Transfer learning for efficient meta-modeling of process simulations. Chemical Engineering Research and Design, 138, 546-553.
Chung, W., & Lee, J. H. (2020). Input–output surrogate models for efficient economic evaluation of amine scrubbing CO2 capture processes. Industrial & Engineering Chemistry Research, 59(42), 18951-18964.
Cousins, A., Wardhaugh, L. T., & Feron, P. H. M. (2011). A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. International Journal of Greenhouse Gas Control, 5(4), 605-619.
Cozad, A., Sahinidis, N. V., & Miller, D. C. (2014). Learning surrogate models for simulation‐based optimization. AIChE Journal, 60(6), 2211-2227.
Cui, X., Kær, S. K., & Nielsen, M. P. (2022). Energy analysis and surrogate modeling for the green methanol production under dynamic operating conditions. Fuel, 307, 121924.
Damartzis, T., Papadopoulos, A. I., & Seferlis, P. (2016). Process flowsheet design optimization for various amine-based solvents in post-combustion CO2 capture plants. Journal of Cleaner Production, 111, 204-216.
Dash, S. K., Samanta, A., Samanta, A. N., & Bandyopadhyay, S. S. (2011a). Absorption of carbon dioxide in piperazine activated concentrated aqueous 2-amino-2-methyl-1-propanol solvent. Chemical Engineering Science, 66(14), 3223-3233.
Dash, S. K., Samanta, A. N., & Bandyopadhyay, S. S. (2011b). (Vapour+liquid) equilibria (VLE) of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol: New data and modelling using eNRTL-equation. The Journal of Chemical Thermodynamics, 43(8), 1278-1285.
Dash, S. K., Samanta, A. N., & Bandyopadhyay, S. S. (2012). Experimental and theoretical investigation of solubility of carbon dioxide in concentrated aqueous solution of 2-amino-2-methyl-1-propanol and piperazine. The Journal of Chemical Thermodynamics, 51, 120-125.
Dash, S. K., & Bandyopadhyay, S. S. (2016). Studies on the effect of addition of piperazine and sulfolane into aqueous solution of N-methyldiethanolamine for CO2 capture and VLE modelling using eNRTL equation. International Journal of Greenhouse Gas Control, 44, 227-237.
Davis, S. E., Cremaschi, S., & Eden, M. R. (2018). Efficient surrogate model development: impact of sample size and underlying model dimensions. In Computer Aided Chemical Engineering (Vol. 44, pp. 979-984). Elsevier.
Dawodu, O. F., & Meisen, A. (1994). Solubility of carbon dioxide in aqueous mixtures of alkanolamines. Journal of Chemical and Engineering Data, 39(3), 548-552.
De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G., & Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in classification tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7), 3366-3385.
Derks, P. W. J., Dijkstra, H. B. S., Hogendoorn, J. A., & Versteeg, G. F. (2005). Solubility of carbon dioxide in aqueous piperazine solutions. AIChE Journal, 51(8), 2311-2327.
Deshmukh, R. D., & Mather, A. E. (1981). A mathematical model for equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous alkanolamine solutions. Chemical Engineering Science, 36(2), 355-362.
Donaldson, T. L., & Nguyen, Y. N. (1980). Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Industrial & Engineering Chemistry Fundamentals, 19(3), 260-266.
Dubois, L., & Thomas, D. (2018). Comparison of various configurations of the absorption-regeneration process using different solvents for the post-combustion CO2 capture applied to cement plant flue gases. International Journal of Greenhouse Gas Control, 69, 20-35.
Dugas, R., & Rochelle, G. (2009). Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine. Energy Procedia, 1(1), 1163-1169.
Eason, J., & Cremaschi, S. (2014). Adaptive sequential sampling for surrogate model generation with artificial neural networks. Computers & Chemical Engineering, 68, 220-232.
Ermatchkov, V., Perez-Salado Kamps, A., & Maurer, G. (2006a). Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine in the low gas loading region. Industrial & Engineering Chemistry Research, 45(17), 6081-6091.
Ermatchkov, V., Pérez-Salado Kamps, A., Speyer, D., & Maurer, G. (2006b). Solubility of carbon dioxide in aqueous solutions of piperazine in the low gas loading region. Journal of Chemical & Engineering Data, 51(5), 1788-1796.
Farahani, H. S., Fatehi, A., Nadali, A., & Shoorehdeli, M. A. (2021). Domain Adversarial Neural Network Regression to design transferable soft sensor in a power plant. Computers in Industry, 132, 103489.
Fernandez, E. S., Bergsma, E. J., de Miguel Mercader, F., Goetheer, E. L., & Vlugt, T. J. (2012). Optimisation of lean vapour compression (LVC) as an option for post-combustion CO2 capture: Net present value maximisation. International Journal of Greenhouse Gas Control, 11, S114-S121.
Ferrara, G., Lanzini, A., Leone, P., Ho, M. T., & Wiley, D. E. (2017). Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption. Energy, 130, 113-128.
Galindo, P., Schäffer, A., Brechtel, K., Unterberger, S., & Scheffknecht, G. (2012). Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions. Fuel, 101, 2-8.
Gao, J., Yin, J., Zhu, F., Chen, X., Tong, M., Kang, W., Zhou, Y., & Lu, J. (2016). Experimental study of a hybrid solvent MEA-methanol for post-combustion CO2 absorption in an absorber packed with three different packing: Sulzer BX500, Mellapale Y500, Pall rings 16×16. Separation and Purification Technology, 163, 23-29.
Goldstein, D., Heyer, M., Jakobs, D., Schultz, E. S., & Biegler, L. T. (2022). Multilevel surrogate modeling of an amine scrubbing process for CO2 capture. AIChE Journal, 68(6), e17705.
Haghtalab, A., Eghbali, H., & Shojaeian, A. (2014). Experiment and modeling solubility of CO2 in aqueous solutions of diisopropanolamine+2-amino-2-methyl-1-propanol+piperazine at high pressures. The Journal of Chemical Thermodynamics, 71, 71-83.
Haghtalab, A., & Ghahremani, E. (2015). The solubility measurement and modeling of CO2 in aqueous solution of N-methyldiethanolaminen+2-amino-2-methyl-1-propanol+piperazine at high pressures. Fluid Phase Equilibria, 400, 62-75.
Haghtalab, A., Asadi, E., & Shahsavari, M. (2021). High-pressure vapor–liquid equilibrium measurement of CO2 solubility into aqueous solvents of (diisopropylamine+L-lysine) and (diisopropylamine+piperazine+L-lysine) at different temperatures and compositions. Journal of Chemical & Engineering Data, 66(11), 4254-4271.
Haji-Sulaiman, M. Z., Aroua, M. K., & Benamor, A. (1998). Analysis of equilibrium data of CO2 in aqueous solutions of diethanolamine (DEA), methyl-diethanolamine (MDEA) and their mixtures using the modified Kent Eisenberg model. Chemical Engineering Research and Design, 76(8), 961-968.
Hasan, M. F., Boukouvala, F., First, E. L., & Floudas, C. A. (2014). Nationwide, regional, and statewide CO2 capture, utilization, and sequestration supply chain network optimization. Industrial & Engineering Chemistry Research, 53(18), 7489-7506.
Hassankiadeh, M. N., & Jahangiri, A. (2018). Application of aqueous blends of AMP and piperazine to the low CO2 partial pressure capturing: New experimental and theoretical analysis. Energy, 165, 164-178.
Helei, L., Tantikhajorngosol, P., Chan, C., & Tontiwachwuthikul, P. (2021). Technology development and applications of artificial intelligence for post-combustion carbon dioxide capture: Critical literature review and perspectives. International Journal of Greenhouse Gas Control, 108, 103307.
Henao, C. A., & Maravelias, C. T. (2011). Surrogate‐based superstructure optimization framework. AIChE Journal, 57(5), 1216-1232.
Hoff, K. A., & Svendsen, H. F. (2013). CO2 absorption with membrane contactors vs. packed absorbers-Challenges and opportunities in post combustion capture and natural gas sweetening. Energy Procedia, 37, 952-960.
Hosseinpour, M., Shojaei, M. J., Salimi, M., & Amidpour, M. (2023). Machine learning in absorption-based post-combustion carbon capture systems: A state-of-the-art review. Fuel, 353, 129265.
Hsiao, Y. D., Kang, J. L., & Wong, D. S. H. (2021). Development of robust and physically interpretable soft sensor for industrial distillation column using transfer learning with small datasets. Processes, 9(4), 667.
Hsiao, Y. D., & Chang, C. T. (2023a). Progressive learning for surrogate modeling of amine scrubbing CO2 capture processes. Chemical Engineering Research and Design, 194, 653-665.
Hsiao, Y. D., & Chang, C. T. (2023b). Expandable neural networks for efficient modeling of various amine scrubbing configurations for CO2 capture. Chemical Engineering Science, 281, 119191.
Hsiao, Y. D., & Chang, C. T. (2023). Joint incremental learning network for flexible modeling of carbon dioxide solubility in aqueous mixtures of amines. Separation and Purification Technology, 330, 125299.
Hwang, S. J., Kim, H., & Lee, K. S. (2016). Prediction of VLE for aqueous blended amines using VLE models of single amines. International Journal of Greenhouse Gas Control, 49, 250-258.
Ibrahim, M., Al-Sobhi, S., Mukherjee, R., & AlNouss, A. (2019). Impact of sampling technique on the performance of surrogate models generated with artificial neural network (ANN): A case study for a natural gas stabilization unit. Energies, 12(10), 1906.
Isaacs, E. E., Otto, F. D., & Mather, A. E. (1977a). Solubility of hydrogen sulfide and carbon dioxide in an aqueous diisopropanolamine solution. Journal of Chemical and Engineering Data, 22(1), 71-73.
Isaacs, E. E., Otto, F. D., & Mather, A. E. (1977b). The solubility of mixtures of carbon dioxide and hydrogen sulphide in an aqueous DIPA solution. The Canadian Journal of Chemical Engineering, 55(2), 210-212.
Jenab, M. H., Vahidi, M., & Mehrabi, M. (2006). Solubility of carbon dioxide in aqueous mixtures of DIPA+MDEA and DIPA+PZ solutions. Journal of the Chinese Chemical Society, 53(2), 283-286.
Jeong, Y. S., Jung, J., Lee, U., Yang, C., & Han, C. (2015). Techno-economic analysis of mechanical vapor recompression for process integration of post-combustion CO2 capture with downstream compression. Chemical Engineering Research and Design, 104, 247-255.
Jones, J. H., Froning, H. R., & Claytor Jr, E. E. (1959). Solubility of acidic gases in aqueous monoethanolamine. Journal of Chemical and Engineering Data, 4(1), 85-92.
Jou, F. Y., Mather, A. E., & Otto, F. D. (1982). Solubility of hydrogen sulfide and carbon dioxide in aqueous methyldiethanolamine solutions. Industrial & Engineering Chemistry Process Design and Development, 21(4), 539-544.
Jou, F. Y., Otto, F. D., & Mather, A. E. (1994). Vapor-liquid equilibrium of carbon dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine. Industrial & Engineering Chemistry Research, 33(8), 2002-2005.
Jou, F. Y., Mather, A. E., & Otto, F. D. (1995). The solubility of CO2 in a 30 mass percent monoethanolamine solution. The Canadian Journal of Chemical Engineering, 73(1), 140-147.
Kadiwala, S., Rayer, A. V., & Henni, A. (2010). High pressure solubility of carbon dioxide (CO2) in aqueous piperazine solutions. Fluid Phase Equilibria, 292(1-2), 20-28.
Kajero, O. T., Chen, T., Yao, Y., Chuang, Y. C., & Wong, D. S. H. (2017). Meta-modelling in chemical process system engineering. Journal of the Taiwan Institute of Chemical Engineers, 73, 135-145.
Kamps, Á. P. S., Balaban, A., Jödecke, M., Kuranov, G., Smirnova, N. A., & Maurer, G. (2001). Solubility of single gases carbon dioxide and hydrogen sulfide in aqueous solutions of N-methyldiethanolamine at temperatures from 313 to 393 K and pressures up to 7.6 MPa: New experimental data and model extension. Industrial & Engineering Chemistry Research, 40(2), 696-706.
Kamps, Á. P. S., Xia, J., & Maurer, G. (2003). Solubility of CO2 in (H2O+piperazine) and in (H2O+MDEA+piperazine). AIChE Journal, 49(10), 2662-2670.
Kennard, M. L., & Meisen, A. (1984). Solubility of carbon dioxide in aqueous diethanolamine solutions at elevated temperatures and pressures. Journal of Chemical and Engineering Data, 29(3), 309-312.
Khalifa, O., Alkhatib, I. I., Bahamon, D., Alhajaj, A., Abu-Zahra, M. R., & Vega, L. F. (2022). Modifying absorption process configurations to improve their performance for post-combustion CO2 capture–What have we learned and what is still missing? Chemical Engineering Journal, 430, 133096.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kontos, G., Leontiadis, K., & Tsivintzelis, I. (2023). CO2 solubility in aqueous solutions of blended amines: Experimental data for mixtures with MDEA, AMP and MPA and modeling with the modified Kent-Eisenberg model. Fluid Phase Equilibria, 570, 113800.
Kumar, G., Mondal, T. K., & Kundu, M. (2012). Solubility of CO2 in aqueous blends of (diethanolamine+2-amino-2-methyl-1-propanol) and (diethanolamine+N-methyldiethanolamine). Journal of Chemical & Engineering Data, 57(3), 670-680.
Kundu, M., Mandal, B. P., & Bandyopadhyay, S. S. (2003). Vapor−Liquid equilibrium of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol. Journal of Chemical & Engineering Data, 48(4), 789-796.
Kundu, M., & Bandyopadhyay, S. S. (2006). Solubility of CO2 in water+ diethanolamine+ N-methyldiethanolamine. Fluid Phase Equilibria, 248(2), 158-167.
Kuranov, G., Rumpf, B., Smirnova, N. A., & Maurer, G. (1996). Solubility of single gases carbon dioxide and hydrogen sulfide in aqueous solutions of N-methyldiethanolamine in the temperature range 313−413 K at pressures up to 5 MPa. Industrial & Engineering Chemistry Research, 35(6), 1959-1966.
Lang, Y. D., Malacina, A., Biegler, L. T., Munteanu, S., Madsen, J. I., & Zitney, S. E. (2009). Reduced order model based on principal component analysis for process simulation and optimization. Energy & Fuels, 23(3), 1695-1706.
Laribi, S., Dubois, L., De Weireld, G., & Thomas, D. (2019). Study of the post-combustion CO2 capture process by absorption-regeneration using amine solvents applied to cement plant flue gases with high CO2 contents. International Journal of Greenhouse Gas Control, 90, 102799.
Lawson, J. D., & Garst, A. W. (1976). Gas sweetening data: equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous monoethanolamine and aqueous diethanolamine solutions. Journal of Chemical and Engineering Data, 21(1), 20-30.
Le Moullec, Y., Neveux, T., Al Azki, A., Chikukwa, A., & Hoff, K. A. (2014). Process modifications for solvent-based post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 31, 96-112.
Lee, J. I., Otto, F. D., & Mather, A. E. (1972). Solubility of carbon dioxide in aqueous diethanolamine solutions at high pressures. Journal of Chemical and Engineering Data, 17(4), 465-468.
Li, F., Zhang, J., Oko, E., & Wang, M. (2015). Modelling of a post-combustion CO2 capture process using neural networks. Fuel, 151, 156-163.
Li, F., Zhang, J., Oko, E., & Wang, M. (2017). Modelling of a post-combustion CO2 capture process using extreme learning machine. International Journal of Coal Science & Technology, 4(1), 33-40.
Li, F., Zhang, J., Shang, C., Huang, D., Oko, E., & Wang, M. (2018). Modelling of a post-combustion CO2 capture process using deep belief network. Applied Thermal Engineering, 130, 997-1003.
Li, H., Haugen, G., Ditaranto, M., Berstad, D., & Jordal, K. (2011). Impacts of exhaust gas recirculation (EGR) on the natural gas combined cycle integrated with chemical absorption CO2 capture technology. Energy Procedia, 4, 1411-1418.
Li, K., Leigh, W., Feron, P., Yu, H., & Tade, M. (2016). Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements. Applied Energy, 165, 648-659.
Li, M. H., & Chang, B. C. (1994). Solubilities of carbon dioxide in water+ monoethanolamine+ 2-amino-2-methyl-1-propanol. Journal of Chemical and Engineering Data, 39(3), 448-452.
Li, T., Yang, C., Tantikhajorngosol, P., Sema, T., Liang, Z., Tontiwachwuthikul, P., & Liu, H. (2022). Comparative desorption energy consumption of post-combustion CO2 capture integrated with mechanical vapor recompression technology. Separation and Purification Technology, 294, 121202.
Li, W., Gu, S., Zhang, X., & Chen, T. (2020). Transfer learning for process fault diagnosis: Knowledge transfer from simulation to physical processes. Computers & Chemical Engineering, 139, 106904.
Li, X., Wang, S., & Chen, C. (2014). Experimental and rate‐based modeling study of CO2 capture by aqueous monoethanolamine. Greenhouse Gases: Science and Technology, 4(4), 495-508.
Liang, H., Xu, Z., & Si, F. (2011). Economic analysis of amine based carbon dioxide capture system with bi-pressure stripper in supercritical coal-fired power plant. International Journal of Greenhouse Gas Control, 5(4), 702-709.
Liang, Z., Gao, H., Rongwong, W., & Na, Y. (2015). Comparative studies of stripper overhead vapor integration-based configurations for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 34, 75-84.
Lin, Y. J., & Rochelle, G. T. (2016). Approaching a reversible stripping process for CO2 capture. Chemical Engineering Journal, 283, 1033-1043.
Liu, Y., Yang, C., Liu, K., Chen, B., & Yao, Y. (2019). Domain adaptation transfer learning soft sensor for product quality prediction. Chemometrics and Intelligent Laboratory Systems, 192, 103813.
Lu, J., Yao, K., & Gao, F. (2009). Process similarity and developing new process models through migration. AIChE Journal, 55(9), 2318-2328.
Madugula, A. C. S., Sachde, D., Hovorka, S. D., Meckel, T. A., & Benson, T. J. (2021). Estimation of CO2 emissions from petroleum refineries based on the total operable capacity for carbon capture applications. Chemical Engineering Journal Advances, 8, 100162.
Mahmoodi, R., Mofarahi, M., Izadpanah, A. A., Afkhamipour, M., & Hajizadeh, A. (2019). Experimental and theoretical investigation of equilibrium absorption performance: Effect of alkyl amines as promoters on the CO2 loading of 2-amino-2-methyl-1-propanol at 313 K. Energy & Fuels, 33(9), 8985-8997.
Ma'mun, S., Nilsen, R., Svendsen, H. F., & Juliussen, O. (2005). Solubility of carbon dioxide in 30 mass% monoethanolamine and 50 mass% methyldiethanolamine solutions. Journal of Chemical & Engineering Data, 50(2), 630-634.
Maroto-Valer, M. M. (Ed.). (2010). Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology: Carbon Dioxide (CO2) Storage and Utilisation. Elsevier.
Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computation, 213(2), 455-465.
McBride, K., & Sundmacher, K. (2019). Overview of surrogate modeling in chemical process engineering. Chemie Ingenieur Technik, 91(3), 228-239.
McBride, K., Sanchez Medina, E. I., & Sundmacher, K. (2020). Hybrid semi‐parametric modeling in separation processes: A review. Chemie Ingenieur Technik, 92(7), 842-855.
McIntosh, A. R., & Mahalec, V. (1991). Calculation of steady-state gains for multivariable systems from closed-loop steady-state data. Journal of Process Control, 1(4), 178-186.
Montavon, G., Samek, W., & Müller, K. R. (2018). Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73, 1-15.
Murrieta-Guevara, F., Rebolledo-Libreros, M. E., Romero-Martı́nez, A., & Trejo, A. (1998). Solubility of CO2 in aqueous mixtures of diethanolamine with methyldiethanolamine and 2-amino-2-methyl-1-propanol. Fluid Phase Equilibria, 150, 721-729.
Nguyen, H. L. Q., & Wong, D. S. H. (2021). Integration of rich and lean vapor recompression configurations for aqueous ammonia-based CO2 capture process. Chemical Engineering Research and Design, 169, 86-96.
Notz, R., Mangalapally, H. P., & Hasse, H. (2012). Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. International Journal of Greenhouse Gas Control, 6, 84-112.
Nuchitprasittichai, A., & Cremaschi, S. (2013). An algorithm to determine sample sizes for optimization with artificial neural networks. AIChE Journal, 59(3), 805-812.
Ochoa-Estopier, L. M., Jobson, M., & Smith, R. (2014). The use of reduced models for design and optimisation of heat-integrated crude oil distillation systems. Energy, 75, 5-13.
Ochoa-Estopier, L. M., & Jobson, M. (2015). Optimization of heat-integrated crude oil distillation systems. Part I: The distillation model. Industrial & Engineering Chemistry Research, 54(18), 4988-5000.
Oh, S. Y., Binns, M., Cho, H., & Kim, J. K. (2016). Energy minimization of MEA-based CO2 capture process. Applied Energy, 169, 353-362.
Osuolale, F. N., & Zhang, J. (2016). Energy efficiency optimisation for distillation column using artificial neural network models. Energy, 106, 562-578.
Oyenekan, B. A., & Rochelle, G. T. (2006). Energy performance of stripper configurations for CO2 capture by aqueous amines. Industrial & Engineering Chemistry Research, 45(8), 2457-2464.
Pahlavanzadeh, H., Nourani, S., & Saber, M. (2011). Experimental analysis and modeling of CO2 solubility in AMP (2-amino-2-methyl-1-propanol) at low CO2 partial pressure using the models of Deshmukh–Mather and the artificial neural network. The Journal of Chemical Thermodynamics, 43(12), 1775-1783.
Palmer, K., & Realff, M. (2002). Metamodeling approach to optimization of steady-state flowsheet simulations: Model generation. Chemical Engineering Research and Design, 80(7), 760-772.
Park, S. H., Lee, K. B., Hyun, J. C., & Kim, S. H. (2002). Correlation and prediction of the solubility of carbon dioxide in aqueous alkanolamine and mixed alkanolamine solutions. Industrial & Engineering Chemistry Research, 41(6), 1658-1665.
Park, M. K., & Sandall, O. C. (2001). Solubility of carbon dioxide and nitrous oxide in 50 mass methyldiethanolamine. Journal of Chemical & Engineering Data, 46(1), 166-168.
Penttilä, A., Dell’Era, C., Uusi-Kyyny, P., & Alopaeus, V. (2011). The Henry's law constant of N2O and CO2 in aqueous binary and ternary amine solutions (MEA, DEA, DIPA, MDEA, and AMP). Fluid Phase Equilibria, 311, 59-66.
Powell, M. J. (1994). A direct search optimization method that models the objective and constraint functions by linear interpolation (pp. 51-67). Advances in Optimization and Numerical Analysis. Springer Netherlands.
Rebolledo-Libreros, M. E., & Trejo, A. (2004). Gas solubility of CO2 in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol. Fluid Phase Equilibria, 218(2), 261-267.
Rho, S. W., Yoo, K. P., Lee, J. S., Nam, S. C., Son, J. E., & Min, B. M. (1997). Solubility of CO2 in aqueous methyldiethanolamine solutions. Journal of Chemical & Engineering Data, 42(6), 1161-1164.
Rochelle, G. T., Wu, Y., Chen, E., Akinpelumi, K., Fischer, K. B., Gao, T., Liu, C. T., & Selinger, J. L. (2019). Pilot plant demonstration of piperazine with the advanced flash stripper. International Journal of Greenhouse Gas Control, 84, 72-81.
Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., & Hadsell, R. (2016). Progressive neural networks. arXiv preprint arXiv:1606.04671.
Sakheta, A., & Zahid, U. (2018). Process simulation of dehydration unit for the comparative analysis of natural gas processing and carbon capture application. Chemical Engineering Research and Design, 137, 75-88.
Sakwattanapong, R., Aroonwilas, A., & Veawab, A. (2005). Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines. Industrial & Engineering Chemistry Research, 44(12), 4465-4473.
Saghafi, H., & Arabloo, M. (2017). Modeling of CO2 solubility in MEA, DEA, TEA, and MDEA aqueous solutions using AdaBoost-decision tree and artificial neural network. International Journal of Greenhouse Gas Control, 58, 256-265.
Seo, D. J., & Hong, W. H. (1996). Solubilities of carbon dioxide in aqueous mixtures of diethanolamine and 2-amino-2-methyl-1-propanol. Journal of Chemical & Engineering Data, 41(2), 258-260.
Shalaby, A., Elkamel, A., Douglas, P. L., Zhu, Q., & Zheng, Q. P. (2021). A machine learning approach for modeling and optimization of a CO2 post-combustion capture unit. Energy, 215, 119113.
Sharif, M., Zhang, T., Wu, X., Yu, Y., & Zhang, Z. (2020). Evaluation of CO2 absorption performance by molecular dynamic simulation for mixed secondary and tertiary amines. International Journal of Greenhouse Gas Control, 97, 103059.
Sheikholeslami, R., & Razavi, S. (2017). Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models. Environmental Modelling & Software, 93, 109-126.
Shen, K. P., & Li, M. H. (1992). Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. Journal of chemical and Engineering Data, 37(1), 96-100.
Shokouhi, M., Zoghi, A. T., Vahidi, M., & Moshtari, B. (2015). Solubility of carbon dioxide in aqueous blends of 2-amino-2-methyl-1-propanol and N-methyldiethanolamine. Journal of Chemical & Engineering Data, 60(5), 1250-1258.
Shokry, A., Baraldi, P., Zio, E., & Espuña, A. (2020). Dynamic surrogate modeling for multistep-ahead prediction of multivariate nonlinear chemical processes. Industrial & Engineering Chemistry Research, 59(35), 15634-15655.
Silkenbäumer, D., Rumpf, B., & Lichtenthaler, R. N. (1998). Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol and N-methyldiethanolamine and their mixtures in the temperature range from 313 to 353 K and pressures up to 2.7 MPa. Industrial & Engineering Chemistry Research, 37(8), 3133-3141.
Song, W., Mahalec, V., Long, J., Yang, M., & Qian, F. (2020). Modeling the hydrocracking process with deep neural networks. Industrial & Engineering Chemistry Research, 59(7), 3077-3090.
Sipöcz, N., Tobiesen, F. A., & Assadi, M. (2011). The use of artificial neural network models for CO2 capture plants. Applied Energy, 88(7), 2368-2376.
Suleman, H., Maulud, A. S., & Man, Z. (2018). Experimental measurements and modelling of carbon dioxide solubility in aqueous AMP/MDEA and Piperazine/MDEA blends. Fluid Phase Equilibria, 463, 142-148.
Suleman, H., Maulud, A. S., Fosbøl, P. L., Nasir, Q., Nasir, R., Shahid, M. Z., Nawaz, M., & Abunowara, M. (2021). A review of semi-empirical equilibrium models for CO2-alkanolamine-H2O solutions and their mixtures at high pressure. Journal of Environmental Chemical Engineering, 9(1), 104713.
Tao, J., & Sun, G. (2019). Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization. Aerospace Science and Technology, 92, 722-737.
Terekhov, A. V., Montone, G., & O’Regan, J. K. (2015). Knowledge transfer in deep block-modular neural networks. In Biomimetic and Biohybrid Systems: 4th International Conference, Living Machines 2015, Barcelona, Spain, July 28-31, 2015, Proceedings 4 (pp. 268-279). Springer International Publishing.
Tikadar, D., Gujarathi, A. M., & Guria, C. (2020). Multi-objective optimization of industrial gas-sweetening operations using economic and environmental criteria. Process Safety and Environmental Protection, 140, 283-298.
Tong, D., Maitland, G. C., Trusler, M. J., & Fennell, P. S. (2013). Solubility of carbon dioxide in aqueous blends of 2-amino-2-methyl-1-propanol and piperazine. Chemical Engineering Science, 101, 851-864.
Tontiwachwuthikul, P., Meisen, A., & Lim, C. J. (1991). Solubility of carbon dioxide in 2-amino-2-methyl-1-propanol solutions. Journal of Chemical and Engineering Data, 36(1), 130-133.
Thebelt, A., Wiebe, J., Kronqvist, J., Tsay, C., & Misener, R. (2022). Maximizing information from chemical engineering data sets: Applications to machine learning. Chemical Engineering Science, 252, 117469.
Ullah, A., Soomro, M. I., & Kim, W. S. (2019). Ammonia-based CO2 capture parameters optimization and analysis of lean and rich vapor compression processes. Separation and Purification Technology, 217, 8-16.
Vahidi, M., Zoghi, A. T., Moshtari, B., & Nonahal, B. (2013). Equilibrium solubility of carbon dioxide in an aqueous mixture of N-methyldiethanolamine and diisopropanolamine: An experimental and modeling study. Journal of Chemical & Engineering Data, 58(7), 1963-1968.
Van Wagener, D. H., & Rochelle, G. T. (2011). Stripper configurations for CO2 capture by aqueous monoethanolamine. Chemical Engineering Research and Design, 89(9), 1639-1646.
Wang, M., Joel, A. S., Ramshaw, C., Eimer, D., & Musa, N. M. (2015). Process intensification for post-combustion CO2 capture with chemical absorption: A critical review. Applied Energy, 158, 275-291.
Warudkar, S. S., Cox, K. R., Wong, M. S., & Hirasaki, G. J. (2013). Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture: Part I. High pressure strippers. International Journal of Greenhouse Gas Control, 16, 342-350.
Wu, Y., Zhou, Q., & Chan, C. W. (2010). A comparison of two data analysis techniques and their applications for modeling the carbon dioxide capture process. Engineering Applications of Artificial Intelligence, 23(8), 1265-1276.
Wu, X., Shen, J., Wang, M., & Lee, K. Y. (2020). Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization. Energy, 196, 117070.
Wu, X., Wang, M., Liao, P., Shen, J., & Li, Y. (2020). Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation. Applied Energy, 257, 113941.
Xu, D., Shi, Y., Tsang, I. W., Ong, Y. S., Gong, C., & Shen, X. (2019). Survey on multi-output learning. IEEE Transactions on Neural Networks and Learning Systems, 31(7), 2409-2429.
Yan, W., Hu, S., Yang, Y., Gao, F., & Chen, T. (2011). Bayesian migration of Gaussian process regression for rapid process modeling and optimization. Chemical Engineering Journal, 166(3), 1095-1103.
Yang, Z. Y., Soriano, A. N., Caparanga, A. R., & Li, M. H. (2010). Equilibrium solubility of carbon dioxide in (2-amino-2-methyl-1-propanol+ piperazine+ water). The Journal of Chemical Thermodynamics, 42(5), 659-665.
Yang, X., Rees, R. J., Conway, W., Puxty, G., Yang, Q., & Winkler, D. A. (2017). Computational modeling and simulation of CO2 capture by aqueous amines. Chemical Reviews, 117(14), 9524-9593.
Yoon, J., Yang, E., Lee, J., & Hwang, S. J. (2017). Lifelong learning with dynamically expandable networks. arXiv preprint arXiv:1708.01547.
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks?. Advances in Neural Information Processing Systems, 27.
Zhang, Y., Que, H., & Chen, C. C. (2011). Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model. Fluid Phase Equilibria, 311, 67-75.
Zhang, K., Wu, J., Yoo, H., & Lee, Y. (2021). Machine learning-based approach for tailor-made design of ionic liquids: Application to CO2 capture. Separation and Purification Technology, 275, 119117.
Zhang, Y., & Yang, Q. (2021). A survey on multi-task learning. IEEE Transactions on Knowledge and Data Engineering, 34(12), 5586-5609.
Zhou, Q., Chan, C. W., Tontiwachwuthikul, P., Idem, R., & Gelowitz, D. (2013). Application of neuro-fuzzy modeling technique for operational problem solving in a CO2 capture process system. J. Greenh. Gas Control, 15, 32-41.
Zhu, W., Ye, H., Yang, Y., Zou, X., & Dong, H. (2022). Simulation-based optimization of a multiple gas feed sweetening process. ACS Omega, 7(3), 2690-2705.
Zhuang, Y., Liu, Y., Ahmed, A., Zhong, Z., Ehecatl, A., Hale, C. P., & Mercangöz, M. (2022). A hybrid data-driven and mechanistic model soft sensor for estimating CO2 concentrations for a carbon capture pilot plant. Computers in Industry, 143, 103747.