簡易檢索 / 詳目顯示

研究生: 陳佑典
Chen, Yu-Tien
論文名稱: 油壓式鏈條張力器系統之模擬與實驗驗證
Simulation and Experimental Verification of a Hydraulic Chain-Tensioner System
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 82
中文關鍵詞: 油壓式張力器張力器受力模型正時鏈系統實驗鏈條間隙預壓力
外文關鍵詞: Hydraulic tensioner, tensioner force model, engine timing chain system experiment, chain clearance, preload
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究油壓式張力器對引擎正時鏈系統的影響,以及探討引擎長時間運轉後之鬆弛現象對預壓力以及止推力的影響,並且分析張力器作動原理,並於油不可壓縮的假設下利用納維-斯托克斯方程式建立張力器受力模型,最後於模擬軟體對實驗進行分析與驗證。
    然後,將張力器獨立於正時鏈系統做靜態實驗與動態實驗,在空氣量不同的情況下利用位移平台以低速度推動柱塞,比較空氣含量多寡對止推力的影響;動態實驗則利用馬達驅動偏心凸輪,以模擬導桿振動幅度與振動頻率對張力器受力的關係;將引擎正時鏈系統架設於實驗平台上,並以直流馬達驅動曲軸進行實驗量測,比較不同轉速之驅動扭矩、低壓室壓力、張力器受力及柱塞位置,並藉由更改裝配方式比較外彈簧與止推力對正時鏈系統的影響;利用多體動力學之商用軟體建立引擎正時鏈系統模型,並將止推力以函數的方式作用於張力器與導桿的接觸面,模擬不同轉速下之張力器受力並與正時鏈系統實驗結果進行比較;最後藉由鏈條拉伸實驗量測鏈條間隙大小,以及導桿變形量測實驗以求得等效導桿變形之扭轉彈簧勁度,並將參數輸入引擎正時鏈系統模型中,比較鏈條鬆弛前後之張力器受力以及引擎無運轉下之預壓力,並且提出維持預壓力以及止推力之設計方法。

    The purpose of this thesis is to analyze the dynamic behavior of timing chain system and build mathematical model of hydraulic tensioner, which is able to be applied in CAE software. The mathematical model of tensioner force is developed with Navier-Stokes equation under the premise that the oil is incompressible. A static experiment test setup to analyze the effect of air in tensioner force. With different air proportion in tensioner, the motion platform pushes plunger at the velocity 0.1 mm/s to eliminate dynamic effect, and loadcell measures plunger force in every case. In order to simulate dynamic effect of chain vibration to tensioner force, the eccentric cam is driven by motor in different rotation speed to convert the rotational movement of a motor driven cam disc in a translation movement. The engine timing system experiment is assembled on experimental platform and the crankshaft is driven by motor. Sensors which are mounted at engine used to measure driving torque, LPC pressure, tensioner force and plunger position in different engine speed. Timing chain system engine is modeled by commercial software based on multi-body dynamics. The no-return force in the form of function applied on the contact surface between plunger and guide in software, and the simulation results are compared with measurement result. In order to discuss the effect of chain clearance and tensioner preload when engine is static, the tensile test and guide experiment are developed to acquire essential parameter. Finally, with simulation result, the method of maintaining tensioner preload and no-return force after chain loose is presented.

    摘要 I ABSTRACT II 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVIII 符號說明 XXIII 第一章 緒論 1 1.1 背景介紹 1 1.2 文獻回顧 2 1.2.1 張力器 2 1.2.2 鏈條傳動機構 5 1.2.3 引擎正時鏈系統實驗 7 1.3 動機與目標 9 1.4 論文架構 10 第二章 張力器模型建立與分析 11 2.1 前言 11 2.2 油壓式張力器分析 11 2.2.1 油壓式張力器構造 11 2.2.2 張力器受力分析 15 2.2.3 止推力模型 16 2.3 張力器靜態與動態實驗 20 2.3.1 汽缸架設與實驗用油 20 2.3.2 靜態實驗設計與結果 21 2.3.3 動態實驗設計與結果 23 2.4 本章小結 26 第三章 正時鏈系統實驗設計與實驗結果 27 3.1 前言 27 3.2 正時鏈系統實驗配置 28 3.2.1 正時鏈系統實驗架設 28 3.2.2 實驗方法 31 3.3 導桿位置與頂出力分析 32 3.3.1 導桿位移與柱塞分離 32 3.3.2 延長型螺帽設計 34 3.3.3 預壓力分析 34 3.4 正時鏈系統實驗結果 37 3.4.1 不同轉速下之正時鏈系統行為 37 3.4.2 外彈簧對正時鏈系統影響 38 3.4.3 止推力對正時鏈系統影響 42 3.4.4 穿孔螺帽長度對正時鏈系統影響 46 3.5 本章小結 47 第四章 引擎正時鏈系統之電腦輔助模型建立與動力分析 49 4.1 前言 49 4.2 電腦輔助分析模型與設定 49 4.3 鏈條鬆弛對正時鏈系統影響 52 4.3.1 鏈條拉伸實驗 54 4.3.2 鏈條間隙對預壓力影響 55 4.3.3 鏈條鬆弛與預壓力維持設計 57 4.3.4 鏈條鬆弛與止推力維持設計 63 4.4 導桿變形實驗 65 4.4.1 導桿楊氏係數量測實驗 65 4.4.2 扭轉彈簧等效導桿變形 66 4.4.3 導桿變形對預壓力影響 67 4.5 電腦輔助分析與實驗驗證 68 4.6 本章小結 71 第五章 結論與未來工作 73 5.1 結論 73 5.2 未來工作 74 參考文獻 76 附錄 正時鏈系統實驗組裝說明 80  

    [1] 吳健安(2017)。引擎汽門機構阻扭矩最小化設計與正時鏈系統動力分析(碩士論文)。國立成功大學機械工程學系,台南市,台灣。
    [2] Klarin, B., Jelovic, M., & Resch, T. (2010). Simulation methodology for consideration of injection system on engine noise contribution. SAE International Journal of Passenger Cars-Mechanical Systems, 3(2010-01-1410), 875-885.
    [3] Hyakutake, T., Inagaki, M., Matsuda, M., Hakamada, N., & Teramachi, Y. (2001). Measurement of friction in timing chain. JSAE review, 22(3), 343-347.
    [4] Krueger, K., Engelhardt, T., Ginzinger, L., & Ulbrich, H. (2007). Dynamical analysis of hydraulic chain tensioners-experiment and simulation (No. 2007-01-1461). SAE Technical Paper.
    [5] Takagishi, H., Muguruma, K., Takahashi, N., & Nagakubo, A. (2008). Analysis of effect of tensioner on chain system (No. 2008-01-1496). SAE Technical Paper.
    [6] Takagishi, H., & Nagakubo, A. (2006). Multi-body dynamic chain system simulation using a blade tensioner (No. 2006-32-0067). SAE Technical Paper.
    [7] 林冠儒(2014)。機車引擎正時鏈系統之動態分析與實驗驗證(碩士論文)。國立成功大學機械工程學系,台南市,台灣。
    [8] Thompson, S., & Brechko, A. (2007). Front end accessory drive vibration control solutions for engines with cylinder deactivation. SAE Transactions, 277-302.
    [9] Krueger, K., Ginzinger, L., & Ulbrich, H. (2008). Influences of Leakage Gap Variations on the Dynamics of Hydraulic Chain Tensioners–Experiment and Simulation (No. 2008-01-0294). SAE Technical Paper.
    [10] Manin, L., Michon, G., Remond, D., & Dufour, R. (2009). From transmission error measurement to pulley–belt slip determination in serpentine belt drives: Influence of tensioner and belt characteristics. Mechanism and Machine Theory, 44(4), 813-821.
    [11] Grego, P., & Pederiva, R. (2015). On the Dynamics of a Belt-Tensioner with Dry-Friction and Nonlinear Spring (No. 2015-36-0532). SAE Technical Paper.
    [12] Kraver, T. C., Fan, G. W., & Shah, J. J. (1996). Complex modal analysis of a flat belt pulley system with belt damping and coulomb-damped tensioner. Journal of Mechanical Design, 118(2), 306-311.
    [13] Lee, I. H., Kin, H., & Yeo, C. G. (1993). Tension Behavior of an OHC Drive Timing Bell System for Fixed and Automatic Tensioner (No. 931871). SAE Technical Paper.
    [14] 林登穎(2015)。引擎正時系統受力最小化之分析與實驗(碩士論文)。國立成功大學機械工程學系,台南市,台灣。
    [15] Sopouch, M., Hellinger, W., & Priebsch, H. H. (2002). Simulation of engine's structure borne noise excitation due to the timing chain drive (No. 2002-01-0451). SAE Technical Paper.
    [16] Huber, R., & Clauberg, J. (2017). Physically Motivated Model for Efficient Dynamic Simulation of Chain Tensioners with Labyrinth Seals. SAE International Journal of Engines, 10(2017-01-1073), 656-667.
    [17] Mahalingam, S. (1957). Transverse vibrations of power transmission chains. British Journal of Applied Physics, 8(4), 145.
    [18] Mahalingam, S. (1958). Polygonal action in chain drives. Journal of the Franklin Institute, 265(1), 23-28.
    [19] Bouillon, G., & Tordion, G. V. (1965). On polygonal action in roller chain drives. Journal of Engineering for Industry, 87(2), 243-250.
    [20] Pedersen, S. L., Hansen, J. M., & Ambrósio, J. A. (2004). A roller chain drive model including contact with guide-bars. Multibody System Dynamics, 12(3), 285-301.
    [21] Veikos, N. M. (1992). On the dynamic analysis of roller chain drives.
    [22] Troedsson, I., & Vedmar, L. (1999). A method to determine the static load distribution in a chain drive. Journal of Mechanical Design, 121(3), 402-408.
    [23] Troedsson, I., & Vedmar, L. (2001). A method to determine the dynamic load distribution in a chain drive. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(5), 569-579.
    [24] Lankarani, H. M., & Nikravesh, P. E. (1994). Continuous contact force models for impact analysis in multibody systems. Nonlinear Dynamics, 5(2), 193-207.
    [25] Weber, C., Herrmann, W., & Stadtmann, J. (1998). Experimental investigation into the dynamic engine timing chain behavior (No. 980840). SAE Technical Paper.
    [26] Stephenson, R., Glennie, D., Fawcett, J. N., & Hale, J. M. (2000). A method of measuring the dynamic loads in high-speed timing chains. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 214(2), 217-226.
    [27] Hatakeyama, R., & Niino, T. (2018). Analysis of Rotational Vibration Mechanism of Camshaft at High Engine Speed in Engines with In-Line Four-Cylinder DOHC Configuration (No. 2018-32-0072). SAE Technical Paper.
    [28] Weber, C., Herrmann, W., & Stadtmann, J. (1998).Experimental investigation into the dynamic engine timing chain behavior (No. 980840). SAE Technical Paper.
    [29] Fluid Mechanics, 7th Edition SI Version
    [30] https://blog.xuite.net/e168e168/blog
    [31] ftp://ftp.omega.com/public/AutomationGroup/products/StepMotorDrives/Manuals/ST5_10-Plus_QuickSetup.pdf
    [32] http://www.ni.com/product-documentation/14604/zht/
    [33] http://www.futek.com/files/pdf/Product%20Drawings/FSH00091.pdf
    [34] Cleghorn, W. L., & Dechev, N. (2005). Mechanics of machines(Vol. 82). New York: Oxford University Press.
    [35] 侯柏均(2016)。引擎凸輪軸扭矩平衡凸輪機構之設計與實驗(碩士論文)。國立成功大學機械工程學系,台南市,台灣。
    [36] https://www.omron.com.tw/data_pdf/cat/e6b2-c_ds_tw_6_1.pdf
    [37] https://www.futek.com/files/pdf/Product%20Drawings/trs605.pdf
    [38] http://www.chunde.com.tw/index.php?option=product&lang=cht&task=dfile&id=201&index=2
    [39] http://www.stately.com.tw/data_sheet/cd22.pdf
    [40] https://www.futek.com/files/pdf/Product%20Drawings/llb250.pdf
    [41] https://tw.misumi-ec.com/vona2/detail/110300244940/?HissuCode=CBAS6-25
    [42] R.C. Juvinall and K.M. Marshek, Machine Component Design. John Wiley and Sons. p. 312-344.
    [43] R.G. Budynas and J.K. Nisbett, Shigley's Mechanical Engineering Design. 2014: WCB/McGraw-Hill. 1104.
    [44] R.C. Juvinall and K.M. Marshek, Machine Component Design. John Wiley and Sons. p. 497-504.
    [45] Function Bay, Inc., 2012, “RecurDyn Help.”

    無法下載圖示 校內:2024-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE