簡易檢索 / 詳目顯示

研究生: 古堯文
Ku, Yao-Wen
論文名稱: 火害後空氣冷卻圓弧切削減弱式梁柱彎矩接頭耐震行為之研究
The Post-Fire Seismic Behavior of the Air-Cooled Radius-Cut RBS Beam-to-Column Moment Connection
指導教授: 鍾興陽
Chung, Hsin-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 308
中文關鍵詞: 火害後空氣冷卻圓弧切削減弱式梁柱接頭反覆載重試驗
外文關鍵詞: Post-fire, Air-cooled, Radius-Cut, RBS Beam-to-Column Connection, Cyclic Loading Test
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討受到高溫火害後空冷的圓弧切削減弱式梁柱接頭,其耐震能力與火害前之差異,故製作兩組相同的實尺寸H型梁-箱型柱彎矩接頭試體,其中一組未受火害之RBS-R2試體為對照組,另外一組受到900°C高溫火害後於空氣中自然冷卻之RBS-A9試體為實驗組,藉以比較兩組試體火害前後之耐震行為與能力之異同處。本研究之梁柱接頭試體母材為SN490B耐震鋼材,梁與柱接合處採用FEMA-350報告中WUF-W型式之銲接孔,托梁之梁翼板也採用FEMA-350建議之圓弧切削型式,兩組試體皆進行相同的梁柱接頭反覆載重試驗,試驗結果顯示:不論是RBS-R2試體或是RBS-A9試體皆能通過AISC耐震規範(2010)之規定,皆屬於擁有良好延展性與韌性的梁柱接頭。兩組試體之柱面彎矩強度直到層間位移角5%時才開始下降,由於RBS-A9試體之鋼材強度下降,故在相同層間位移角下RBS-A9試體之柱面彎矩強度皆低於RBS-R2試體,比較兩組試體層間位移角0%至5%之累積總消散能量,發現RBS-A9試體略低於RBS-R2試體2.2%,顯示RBS-A9試體與RBS-R2試體在反覆載重作用下,韌性接近。此外,本論文也比較STD-A9與RBS-A9兩組梁柱接頭試體耐震行為之差異,試驗結果顯示:RBS-A9試體的撓曲勁度皆略小於STD-A9試體,兩組試體之柱面彎矩強度皆於達到層間位移角5%時才開始下降,由於STD-A9試體之梁翼板發生較嚴重的局部挫屈,故其柱面彎矩強度下降的幅度也較大,RBS-A9試體之應變計讀值顯示梁翼板在圓弧切削處之應變較靠近柱面處為大,顯示圓弧切削處能順利形成塑性鉸,且可降低柱面銲道之應力,進而保護柱面銲道。

    This thesis mainly investigated the seismic-resistant performance of the radius-cut RBS beam-to-column connection which was subjected to high-temperature fire and then air-cooled to room temperature. The differences of structural behaviors between the pre-fire and post-fire radius-cut RBS beam-to-column connections were also discussed. Hence, two full-scale H-beam to box-column moment connection specimens identical in dimensions were fabricated. The RBS-R2 specimen without any fire exposure was the control group. The RBS-A9 specimen subjected to 900°C high-temperature fire and then air-cooled to room temperature was the experimental specimen. The differences between the pre-fire and post-fire seismic-resistant behaviors and performances of the radius-cut RBS beam-to-column connections were obtained by the comparisons of RBS-R2 and RBS-A9 specimens. The base material of the two specimens was SN490B seismic-resistant steel. The WUF-W type weld access hole and the radius-cut RBS connection type suggested in FEMA-350 report were utilized in the specimen fabrication of this research. The two specimens were tested by the same beam-to-column cyclic loading procedure. The test results showed that both of the RBS-R2 and RBS-A9 specimens could meet the requirements of 2010 AISC seismic provisions, and belonged to the beam-to-column connections with good ductility and toughness. The column-face moment strengths of the two specimens started to decrease at the 5% inter-story drift angle. Due to the slight material strength decreasing of the RBS-A9 specimen, the column-face moment strength of the RBS-A9 specimen was lower than that of the RBS-R2 specimen under the same inter-story drift angle. After comparing the total accumulated dissipated energy of the two specimens from 0% to 5% inter-story drift angles, it was found that the RBS-A9 specimen was only 2.2% slightly lower than the RBS-R2 specimen. This comparison showed that the toughness values obtained from the two specimens under cyclic loading action were close. In addition, this thesis also compared the seismic-resistant performances of the STD-A9 and RBS-A9 specimens, and the test results showed that the flexural stiffness of RBS-A9 specimen was slightly lower than that of the STD-A9 specimen and the column-face moment strengths of the two specimens both decreased after reaching 5% inter-story drift angle. Due to more serious local buckling at the beam flanges of the STD-A9 specimen, the decreasing slope of column-face moment strength of STD-A9 specimen is steeper than the RBS-A9 specimen. For the RBS-A9 specimen, the strains on the radius-cut zone of beam flanges are much greater than those of the STD-A9 specimen. This result showed that the radius-cut zone could successfully form a plastic hinge, reduced the stresses on the column face weld passes, and protected the column face weld passes.

    摘要----------------I Extended Abstract----------------II 誌謝----------------IX 目錄----------------X 表目錄----------------XIV 圖目錄----------------XV 符號表----------------XXVI 第一章 緒論----------------1 1.1研究背景與動機----------------1 1.2研究目的----------------4 1.3研究方法----------------5 1.4論文架構----------------6 第二章 文獻回顧----------------8 2.1常溫下梁柱彎矩接頭反覆載重行為研究----------------8 2.2火害後鋼結構反覆載重行為研究----------------10 2.2.1火害後鋼材與銲材特性研究----------------10 2.2.2火害後梁柱彎矩接頭反覆載重行為研究----------------13 第三章 試體規劃與製作----------------16 3.1試體規劃與編號----------------16 3.2試體設計----------------16 3.3材料介紹----------------17 3.3.1母材----------------17 3.3.2銲材----------------18 3.4製作流程----------------19 3.4.1柱構件----------------19 3.4.2梁構件----------------20 3.4.3組裝----------------20 3.5試體溫度處理----------------21 3.5.1溫度處理目的----------------21 3.5.2溫度處理步驟----------------22 3.6試體各部位試驗結果----------------22 3.6.1拉伸試驗結果----------------22 3.6.2梁斷面硬度試驗結果----------------23 第四章 試驗規劃----------------48 4.1試驗配置----------------48 4.1.1加載設備(Actuator)----------------48 4.1.2底座(Roller)----------------48 4.1.3軸向支撐(Axial Support)----------------49 4.1.4側向支撐(Lateral Bracing)----------------49 4.2量測計畫----------------50 4.2.1應變計----------------50 4.2.2位移計----------------50 4.2.3傾斜儀----------------50 4.2.4 LVDT----------------51 4.2.5資料擷取器----------------51 4.3試驗程序----------------52 4.3.1反覆載重試驗歷程設定----------------52 4.3.2反覆載重試驗時間點描述----------------53 4.3.3試驗終止條件----------------53 4.3.4試驗流程----------------53 第五章 試驗結果----------------74 5.1前言----------------74 5.2 RBS-R2試體之試驗結果----------------75 5.2.1彈性階段----------------75 5.2.2初期塑性階段----------------75 5.2.3中期塑性階段----------------77 5.2.4後期塑性階段----------------77 5.3 RBS-A9試體之試驗結果----------------79 5.3.1彈性階段----------------79 5.3.2初期塑性階段----------------79 5.3.3中期塑性階段----------------81 5.3.4後期塑性階段----------------81 5.4彎矩-柱轉角遲滯迴圈逆轉現象----------------83 5.4.1遲滯迴圈逆轉說明----------------83 5.4.2逆轉原因推測----------------83 5.5小結----------------84 第六章 試驗結果比較與討論----------------154 6.1前言----------------154 6.2氣冷與常溫圓弧切削試體之比較----------------154 6.2.1破壞事件比較----------------155 6.2.2梁柱接頭區各部位應變分佈比較----------------157 6.2.3塑性變形能力比較----------------162 6.2.4骨幹曲線比較----------------163 6.2.5消散能量比較----------------164 6.2.6硬度比較----------------166 6.2.7小結----------------167 6.3氣冷圓弧切削與氣冷標準試體之比較----------------169 6.3.1破壞事件比較----------------169 6.3.2梁柱接頭區各部位應變分佈比較----------------171 6.3.3塑性變形能力比較----------------173 6.3.4骨幹曲線比較----------------173 6.3.5消散能量比較----------------175 6.3.6小結----------------177 第七章 結論與建議---------------- 282 7.1結論----------------283 7.2建議----------------292 附錄A 試體應變計之彎矩應變關係圖----------------294 參考文獻----------------305

    ASTM Designation:E140-12bƐ1. “Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness,” (2012).

    AISC 341-10, “Seismic Provisions for Structural Steel Buldings,” American Institute of Steel Construction, Chicago, Illinois, (2010).

    Chen,C.C., Lin, C.C., “Seismic performance of steel beam-to-column moment connections with tapered beam flanges,” Engineering Structures, Vol. 48, pp. 588-601, (2013).

    Chou, C.C., Tsai, K.C., Wang, Y.Y. and Jao, C.K., “Seismic Rehabilitation of Steel Side Plate Moment Connections,” Earthquake Engng Struct. Dyn., Vol. 39, pp. 23-44, (2010).

    FEMA (2000a), “Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings,” Report No. FEMA-350, SAC Joint Venture, Washington, DC.

    Okazaki, T., “Seismic Performance of Link-to-Column Connections in Steel Eccentrically Braced Frames,” PHD Dissertation, The University of Texas at Austin, (2004).

    ダイヤモンドホイール・ダイヤモンド砥石・CBN工具・CBN砥石と研削研磨の情報サイト,「SN490Bの材質、強度、降伏強度、引張強度|材質や機械的性質の規格」,日本(2013)。

    中國材料學會,「鋼鐵材料手冊」,中華民國材料科學學會,科技叢書(1998)。
    中華民國國家標準,「建築物構造構件耐火試驗法」,CNS 12514-1, A 3305-1,經濟部標準檢驗局(2004)。

    方柏淳,「火害後耐火鋼與普通鋼梁柱銲接接頭十字試體反覆載重實驗之研究」,碩士論文,國立成功大學土木工程系,台南(2014)。

    王士銘,「火害後梁柱接頭銲接區拉力實驗之研究」,碩士論文,國立成功大學土木工程系,台南(2011)。

    吳家慶,「削切蓋板鋼骨梁柱接頭之耐震行為研究」,碩士論文,國立交通大學土木工程系,新竹(2005)。

    周民瑜,「常見結構用鋼材火害後機械性質之研究」,碩士論文,國立成功大學土木工程系,台南(2008)。

    林潔祥,「擴翼式鋼骨托梁抗彎接頭之耐震行為」,碩士論文,國立交通大學土木工程系,新竹(2005)。

    張嘉元,「火害後空氣冷卻H型梁-箱型柱彎矩接頭耐震行為之研究」,碩士論文,國立成功大學土木工程系,台南(2015)。

    粘進發,「鋼箱型柱電熱熔渣銲接區火害後拉力實驗之研究」,碩士論文,國立成功大學土木工程系,台南(2012)。

    陳正平,「鋼結構『開槽銲與填角銲』接合之選用原則探討」,技師報,臺灣省土木技師公會(2002)。

    陳正平,「鋼結構高樓箱型柱使用SN系列鋼材之必要性探討」,技師報,臺灣省土木技師公會(2005)。

    陳正平,「鋼結構梁翼圓弧形切削梁-柱接頭之安全性探討」,技師報460期,台灣省土木技師公會(2005)。

    陳正誠、陳正平,「鋼結構設計手冊(極限設計法)」,中華民國結構工程協會,科技圖書(2003)。

    陳兆誼,「耐火剛與普通鋼及相關梁柱接頭銲道火害後反覆載重行為之研究」,碩士論文,國立成功大學土木工程系,台南(2013)。

    陳宥豪,「火害後水中冷卻H型梁-箱型柱彎矩接頭耐震行為之研究」,碩士論文,國立成功大學土木工程系,台南(2015)。

    陳紀勛,「鋼柱與鋼梁腹板開孔位處塑性區梁柱接頭之耐震行為」,碩士論文,國立交通大學土木工程系,新竹(2008)。

    陳純森,「鋼結構橋梁之品質檢驗」,鋼結構會刋,中華民國鋼結構協會(2004)。

    潘韻瑋,「H型梁與箱型柱彎矩接頭於火害後反覆載重行為之精確數值模擬」,碩士論文,國立成功大學土木工程系,台南(2014)。

    蔡元凱,「火害後耐火鋼與普通鋼梁柱銲接接頭十字試體快速拉伸實驗之研究」,碩士論文,國立成功大學土木工程系,台南(2014)。

    蔡岳勳,「實尺寸鋼結構梁柱彎矩接頭試驗與分析」,碩士論文,國立交通大學土木工程系,新竹(2010)。

    賴傳詠,「火害後H 型梁-箱型柱彎矩接頭反覆載重試驗之數值模擬」,碩士論文,國立成功大學土木工程系,台南(2015)。

    蘇文傑,「實尺寸H型梁-箱型柱彎矩接頭之火害實驗研究」,碩士論文,國立成功大學土木工程系,台南(2008)

    無法下載圖示 校內:2021-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE