簡易檢索 / 詳目顯示

研究生: 林欽毅
Lin, Cin-Yi
論文名稱: 高效率聚光模組之熱傳模擬與光電性能量測分析
Heat transfer Simulations and Optical and Electrical Measurements and Analyses for the High-efficiency Concentrated Optical Module
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 太陽能光追跡光學模組光學效能溫度分佈熱變型
外文關鍵詞: Photovoltaic, Ray tracing, Optical module, Optical performance, Temperature distribution, Thermal deformation
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分為兩部份,第一部份是使用有限元素軟體(Comsol Multiphysics)模擬光學模組經光照射後太陽能電池的溫度分佈與熱變形量,並推算本光學模組可能損失的功率,第二部份是在模擬光源下與太陽下量測光學模組的光電性能。
    首先模擬太陽能電池在沒有散熱底座情形下的溫度分佈與熱變形量,此時使用兩種熱源,分別是光學模組使用兩種不同的聚光透鏡(Fresnel lens與Aspheric lens)在光追跡軟體(TracePro)模擬出的光照度(Irradiance),得知當光學模組搭配Aspheric lens時的太陽能電池最高溫度會高於搭配Fresnel lens,熱點(Hot-spot)效應也較為明顯,因此本研究之光學模組便以搭配Fresnel lens為主。模擬光學模組搭配散熱底座時,在無風條件下與熱對流係數為20W/m2K時,最高溫分別為40.17℃與31.67℃,未超過太陽能電池的允許工作溫度70℃,在此溫度下光學模組的輸出功率將會減少0.088W與0.03W。
    將本光學模組在模擬光源與太陽下量測其電性輸出,經由光追跡模擬發現二次光學元件(SOE)有全反射情形與從反射鏡入射至太陽能電池表面的入射光角度過大,因而效率成cosine函數下降,而本模組Fresnel lens面積與反射鏡面積比為1/6,使得較大面積之入射光沒有發揮效用,導致本光學模組的效率無法有效提升。為確認本模組之幾合光學倍率能有多少效率,將Fresnel lens遮成直徑70mm,經量測可得23%的效率,在Direct normal irradiance(DNI)為742W/m2時,最大輸出功率(Maximum power)為0.655W。

    This study is divided into two parts. The first part is to using the finite element software (Comsol Multiphysics) to analysis the temperature distribution and thermal deformation of the optical module by light irradiance, and calculate the possible power loss of the optical module. The second part is measurements the optical performance of the optical module by solar simulator and sun light.
    First, simulate the temperature distribution and thermal deformation when solar cell had no cooling fin. Using two different irradiance as heat source in Comsol, it’s simulated by optical software (TracePro) in two different concentration lens (Fresnel lens and Aspheric lens). The temperature is higher and Hot-spot effect is quite obvious when use aspheric lens, therefore the optical module in this study is using Fresnel lens as concentration lens. Analog optical module with cooling base and the boundary condition is no wind and convection coefficient is 20W/m2K respectively. The highest temperature is 40.17℃ and 31.67℃, at this temperature, the maximum power of the optical module will reduce 0.088W and 0.03W respectively.
    The optical performance of the optical module was measurement by solar simulator and sun light. Due to inefficiency, through ray tracing simulation finding the secondary optical element (SOE) has total reflection and the incident angle on the solar cell surface from the reflector is too large. The efficiency will decrease by cosine function when incident angle getting large, and the area ratio of Fresnel lens and reflector is 1/6. So the big area of reflector can’t provide useful efficiency. It’s decreased the optical module’s efficiency. Use the arimaeco’s Fresnel lens cover with diameter of 70mm to confirm the optical module’s efficiency. The maximum power is 0.655W when the direct normal irradiance (DNI)is 742W/m2 and the efficiency is 23%.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 符號 xii 第一章 緒論 1 1-1前言 1 1-2替代能源-太陽能 3 1-3太陽能電池種類介紹 4 1-4 太陽能聚光鏡之介紹 7 1-5文獻回顧 11 1-6研究動機與方法 13 1-7本文架構 14 第二章 相關理論與軟體介紹 15 2-1熱傳學簡介[31] 15 2-1-1熱傳導 15 2-1-2熱對流 16 2-1-3熱輻射 17 2-2 Comsol Multiphysics 多重物理分析軟體基本介紹 18 2-2-1熱傳方程式[32] 18 2-2-2熱膨脹[33] 19 2-3 Comsol Multiphysics網格分佈與邊界條件設定 19 第三章 高效率光學模組設計與光電性能量測方法 44 3-1光學元件設計[30] 44 3-2光學元件製備與太陽能電池介紹 47 3-2-1反射鏡(Reflector)製作[30] 47 3-2-2二次光學元件(SOE)製作[30] 47 3-2-3聚光透鏡(Fresnel lens)製作[30] 47 3-2-4反射鏡拋物面鍍銀[30] 48 3-2-5散熱底座製作 48 3-2-6 III-V族太陽能電池 48 3-3太陽能電池工作機制 49 3-4太陽能電池等效電路(Equivalent circuit) 50 3-5電流-電壓特性曲線 51 3-5-1短路電流Isc 51 3-5-2開路電壓Voc 51 3-5-3光電轉換效率η 51 3-5-4填充因子FF 51 3-6太陽輻射 52 3-7使用模擬光源(Solar simulator)量測電性 52 3-7-1模擬光源下量測光接收角(Acceptance angle) 52 3-8太陽光下量測 53 3-8-1追日器(Tracker) 53 3-8-2量測方法 53 第四章 結果與討論 75 4-1高效率光學模組之光學效率模擬結果 75 4-1-1相同焦距不同Fresnel lens大小 75 4-1-2不同Fresnel lens的最佳焦距 75 4-2 高效率光學模組之溫度分佈與熱變形 76 4-2-1 未加散熱底座的太陽能電池溫度分佈與熱變形 76 4-2-2 加裝散熱底座的太陽能電池溫度分佈與熱變形 76 4-3光學模組實際量測結果 77 4-3-1原始光學模組在模擬光源下量測結果 77 4-3-2修改後光學模組在模擬光源下量測結果 78 4-3-3修改後光學模組的光學效率 79 4-3-4修改後光學模組(Modified module)在太陽下量測結果 79 4-3-5將華旭環能的Fresnel lens遮光剩70mm直徑 80 第五章 結論與未來展望 101 5-1結論 101 5-2未來展望 102 參考文獻 103 自述 108

    1. 陳維新, “能源概論”,高立圖書,第三章,2012。
    2. Kazmerski. Best Research-cell Efficiencies, National Renewable Energy Laboratory(NREL), 2012.
    3. Jäger-Waldau A. “PV STATUS REPORT 2012”, JRC SCIENTIFIC AND POLICY RETORTS, 2012.
    4. Spectralab, “C3MJ38.5%PointFocusProducts,” http://www.spectrolab.com/DataSheets/PV/CPV/C3MJ%20CDO%20Products%20201008.pdf, 2011.
    5. Leutz R., Suzuki A., Akisawa A., Kashiwagi T., “Design of a Nonimaging Fresnel Lens for Solar Concentrators”, Solar Energy, 65, 6, pp. 379-388, 1999.
    6. Leutz R., Suzuki A., Akisawa A., Kashiwagi T., “Shaped nonimaging Fresnel lenses,”Journal of Optics A: Pure and Applied Optics ,2, 2000.
    7. Terao A., Mulligan W. P., Daroczi S.G., Pujol O.C., Verlinden P.J., and Swanson R.M., “A mirror-less design for micro-concentrator modules,” Photovoltaic Specialists Conference, pp. 1416-1419, 2000 .
    8. Barnett A., Kirkpatrick D. and Honsberg C., “Very high efficiency solar cell modules”, Progress in Photovoltaics, 17, pp.75–83, 2009.
    9. Bett A. W., Burger B., Dimroth F., Siefer G., Lerchenmüller H., “High-concentration PV using III-V solar cells”, IEEE 4th World Conference on Photovoltaic Energy Conversion,1, pp.615-620, 2006.
    10. Rumyantsev V. D., Sadchikov N. A., Chalov A. E., Ionovaa E. A., Friedmanb D. J., Glennc G., “Terrestrial concentrator PV modules based on GaInP/GaAs/Ge Tj cells and minilens panels”, IEEE 4th World Conference on Photovoltaic Energy Conversion,1,pp.632-535,2006.
    11. Mark S., Stephen J. H., “Shield for solar radiation collector”, Solfocus Inc. Patent No. US7473000 B2 Jan. 6 2009.
    12. Garg H. P., Adhikari R. S., “Optical design calculations for CPCs”, Energy, 23, pp. 907-909, 1998.
    13. Gallo M., Mescia L., Losito O., Bozzetti M., Prudenzano F., “Design of optical antenna for solar energy collection”, Energy, 39, pp.27-32, 2012.
    14. Siefer G., Bett A. W., “Experimental comparison between the power outputs of Flatcon@ modules and silicon flat plate modules”, 0-7803-87074/05 IEEE, pp.643-646, 2005.
    15. Jose L. A., Vicente D., Jesus A., “Optics design key points for high gain photovoltaic solar energy concentrators”, SPIE , 5962, pp.298-306, 2005.
    16. Ekkard B., Alexander G., Daniel P., Jose B., Pablo B., Vicente D., “Design and manufacture of aspheric lenses for novel high efficient photovoltaic concentrator modules”, American Society for Precision Engineering, pp.582-585, 2004.
    17. IEK Industry Service and Information Network, http://ieknet.itri.org.tw, “Introduction and development outlook for the optic-electric technology of the concentration photovoltaic”, Part I and Part II, Sep. 2009.
    18. Salas V., Olias E., “Overview of the photovoltaic technology status and perspective in Spain”, Renewable and Sustainable Energy Reviews, 13, pp. 1049-1057, 2009.
    19. Tzeng G. H., Shiau T. A., Lin C. Y., “Application of multicriteria decision making to the evaluation of new energy system development in Taiwan”, Energy, 17 , pp.983-992,1992.
    20. Hein M., Meusel M., Baur C., Dimroth F., Lange G., Siefer G., “Characterisation of a 25 % high-efficiency Fresnel lens module with GaInP/GaInAs dual-junction concentrator solar cells”, 17th EU-PVSEC, pp.496-499, 2002.
    21. Bett A. W., Baur C., Dimroth F., Lange G., Meusel M., Riesen S. V., “FlatconTM-modules: technology and characterization”, IEEE 3rd World Conference on Photovoltaics, pp.12-16, 2003.
    22. Terao A., Mulligan W. P., Daroczi S. G., Pujol O. C., Verlinden P. J., Swanson R. M., “A mirror-less design for micro-concentrator modules”, Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE , pp.1416-1419, 2000.
    23. Alvarez J. L., Cabrera J., Diaz V., Mateos C., Montoya N., Alonso J., “Industrialization of 1000X concentration photovoltaic modules”, SPIE, 6197, pp.61970I, 2006.
    24. Royne A., Dey C.J., Mills D.R., “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Solar Energy Materials & Solar Cells, 86, pp. 451-483, 2005.
    25. Khoukhi M., Maruyama S., “Theoretical approach of a flat plate solar collector with clear and low-iron glass covers taking into account the spectral absorption and emission within glass covers layer,” Renewable Energy, 30, pp. 1177-1194, 2005.
    26. Zubi G., Bernal-Agustm J. L., Fracastoro G.V., “High concentration Photovoltaic systems applying III-V cells,” Renewable and Sustainale Energy Reviews, 13, pp. 2645-2652, 2009.
    27. Juan-Luis Donmenech-Garret, “Cell behavior under different non-uniform temperature and radiation combined profiles using a two dimensional finite element model,” Solar Energy, 85, pp. 256-264, 2011.
    28. 施天從、呂一璁, “聚焦型III-V族太陽能電池模組”,工程科技與教育學刊,第六卷,第二期。
    29. 卜皓特, “聚光型太陽能模組流場之數值研究”,國立屏東科技大學車輛工程系碩士論文,民國99年。
    30. 李聰瑞, “高效率聚光模組之研究”,國立成功大學機械工程學系博士論文,民國102年。
    31. Incropera F.P., and DeWitt D.P., “Fundamentals of Heat and Mass Transfer,” John Wiley & Sons, 2002.
    32. Comsol Multiphysics Heat Transfer Module User’s Guide 4.3b.
    33. Comsol Multiphysics Structural Mechanics Module User’s Guide4.3b.
    34. Lee C. J. and Lin J. F., “Lens designs by ray tracing analyses for high-performance reflection optical modules”, Journal of Optics, 12, pp.095501 1-9, 2010.
    35. Lambda Research Corporation, USA, “TracePro software for Opto-Mechanical modeling User Manual ”, Release 6 Revision 3, 2.7–2.13, 2010.
    36. Sun W., McBride J. W. and Hill M., “A new approach to characterising aspheric surfaces”, Precision. Engineering. 34, pp. 171-179, 2010.
    37. Welford W. T., Winston R., “High collection nonimaging optics” Academic Press, ISBN-9780127428857, pp.53-163, 1989.
    38. Terao A., Daroczi S. G., Coughlin S. J., Mulligan W. P., and Swanson R. M., “New developments on the flat-plate micro-concentrator module”, 3rd world Conference on Photovoltaic Energy Conversion, Osaka, Japan May 11-18, pp.861-864, 2003.
    39. Brogren M., Nostell P. and Karlsson B., “Optical efficiency of a PV– thermal hybrid CPC module for high latitudes”, Sol. Energy 69, pp.173–185, 2000.
    40. Nilsson J., “Optical design and characterization of solar concentrators for photovoltaics”, Report EBD-T-05/6, Lund University Faculty of Engineering LTH, chapter 6, pp.53–56, 2005.
    41. Petritsch K., “Organic Solar Cell Architectures”, PhD Thesis , 2000.
    42. GREEN M. A.著,曹昭陽、狄大衛、李秀文譯, “太陽電池工作原理、技術與系統應用”,五南圖書,第一章,2009。
    43. “Tracker,” http://www.arimaeco.com/cn/tracker.html, Arimaeco, 2011.

    無法下載圖示 校內:2018-07-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE