| 研究生: |
林欽毅 Lin, Cin-Yi |
|---|---|
| 論文名稱: |
高效率聚光模組之熱傳模擬與光電性能量測分析 Heat transfer Simulations and Optical and Electrical Measurements and Analyses for the High-efficiency Concentrated Optical Module |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 太陽能 、光追跡 、光學模組 、光學效能 、溫度分佈 、熱變型 |
| 外文關鍵詞: | Photovoltaic, Ray tracing, Optical module, Optical performance, Temperature distribution, Thermal deformation |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要分為兩部份,第一部份是使用有限元素軟體(Comsol Multiphysics)模擬光學模組經光照射後太陽能電池的溫度分佈與熱變形量,並推算本光學模組可能損失的功率,第二部份是在模擬光源下與太陽下量測光學模組的光電性能。
首先模擬太陽能電池在沒有散熱底座情形下的溫度分佈與熱變形量,此時使用兩種熱源,分別是光學模組使用兩種不同的聚光透鏡(Fresnel lens與Aspheric lens)在光追跡軟體(TracePro)模擬出的光照度(Irradiance),得知當光學模組搭配Aspheric lens時的太陽能電池最高溫度會高於搭配Fresnel lens,熱點(Hot-spot)效應也較為明顯,因此本研究之光學模組便以搭配Fresnel lens為主。模擬光學模組搭配散熱底座時,在無風條件下與熱對流係數為20W/m2K時,最高溫分別為40.17℃與31.67℃,未超過太陽能電池的允許工作溫度70℃,在此溫度下光學模組的輸出功率將會減少0.088W與0.03W。
將本光學模組在模擬光源與太陽下量測其電性輸出,經由光追跡模擬發現二次光學元件(SOE)有全反射情形與從反射鏡入射至太陽能電池表面的入射光角度過大,因而效率成cosine函數下降,而本模組Fresnel lens面積與反射鏡面積比為1/6,使得較大面積之入射光沒有發揮效用,導致本光學模組的效率無法有效提升。為確認本模組之幾合光學倍率能有多少效率,將Fresnel lens遮成直徑70mm,經量測可得23%的效率,在Direct normal irradiance(DNI)為742W/m2時,最大輸出功率(Maximum power)為0.655W。
This study is divided into two parts. The first part is to using the finite element software (Comsol Multiphysics) to analysis the temperature distribution and thermal deformation of the optical module by light irradiance, and calculate the possible power loss of the optical module. The second part is measurements the optical performance of the optical module by solar simulator and sun light.
First, simulate the temperature distribution and thermal deformation when solar cell had no cooling fin. Using two different irradiance as heat source in Comsol, it’s simulated by optical software (TracePro) in two different concentration lens (Fresnel lens and Aspheric lens). The temperature is higher and Hot-spot effect is quite obvious when use aspheric lens, therefore the optical module in this study is using Fresnel lens as concentration lens. Analog optical module with cooling base and the boundary condition is no wind and convection coefficient is 20W/m2K respectively. The highest temperature is 40.17℃ and 31.67℃, at this temperature, the maximum power of the optical module will reduce 0.088W and 0.03W respectively.
The optical performance of the optical module was measurement by solar simulator and sun light. Due to inefficiency, through ray tracing simulation finding the secondary optical element (SOE) has total reflection and the incident angle on the solar cell surface from the reflector is too large. The efficiency will decrease by cosine function when incident angle getting large, and the area ratio of Fresnel lens and reflector is 1/6. So the big area of reflector can’t provide useful efficiency. It’s decreased the optical module’s efficiency. Use the arimaeco’s Fresnel lens cover with diameter of 70mm to confirm the optical module’s efficiency. The maximum power is 0.655W when the direct normal irradiance (DNI)is 742W/m2 and the efficiency is 23%.
1. 陳維新, “能源概論”,高立圖書,第三章,2012。
2. Kazmerski. Best Research-cell Efficiencies, National Renewable Energy Laboratory(NREL), 2012.
3. Jäger-Waldau A. “PV STATUS REPORT 2012”, JRC SCIENTIFIC AND POLICY RETORTS, 2012.
4. Spectralab, “C3MJ38.5%PointFocusProducts,” http://www.spectrolab.com/DataSheets/PV/CPV/C3MJ%20CDO%20Products%20201008.pdf, 2011.
5. Leutz R., Suzuki A., Akisawa A., Kashiwagi T., “Design of a Nonimaging Fresnel Lens for Solar Concentrators”, Solar Energy, 65, 6, pp. 379-388, 1999.
6. Leutz R., Suzuki A., Akisawa A., Kashiwagi T., “Shaped nonimaging Fresnel lenses,”Journal of Optics A: Pure and Applied Optics ,2, 2000.
7. Terao A., Mulligan W. P., Daroczi S.G., Pujol O.C., Verlinden P.J., and Swanson R.M., “A mirror-less design for micro-concentrator modules,” Photovoltaic Specialists Conference, pp. 1416-1419, 2000 .
8. Barnett A., Kirkpatrick D. and Honsberg C., “Very high efficiency solar cell modules”, Progress in Photovoltaics, 17, pp.75–83, 2009.
9. Bett A. W., Burger B., Dimroth F., Siefer G., Lerchenmüller H., “High-concentration PV using III-V solar cells”, IEEE 4th World Conference on Photovoltaic Energy Conversion,1, pp.615-620, 2006.
10. Rumyantsev V. D., Sadchikov N. A., Chalov A. E., Ionovaa E. A., Friedmanb D. J., Glennc G., “Terrestrial concentrator PV modules based on GaInP/GaAs/Ge Tj cells and minilens panels”, IEEE 4th World Conference on Photovoltaic Energy Conversion,1,pp.632-535,2006.
11. Mark S., Stephen J. H., “Shield for solar radiation collector”, Solfocus Inc. Patent No. US7473000 B2 Jan. 6 2009.
12. Garg H. P., Adhikari R. S., “Optical design calculations for CPCs”, Energy, 23, pp. 907-909, 1998.
13. Gallo M., Mescia L., Losito O., Bozzetti M., Prudenzano F., “Design of optical antenna for solar energy collection”, Energy, 39, pp.27-32, 2012.
14. Siefer G., Bett A. W., “Experimental comparison between the power outputs of Flatcon@ modules and silicon flat plate modules”, 0-7803-87074/05 IEEE, pp.643-646, 2005.
15. Jose L. A., Vicente D., Jesus A., “Optics design key points for high gain photovoltaic solar energy concentrators”, SPIE , 5962, pp.298-306, 2005.
16. Ekkard B., Alexander G., Daniel P., Jose B., Pablo B., Vicente D., “Design and manufacture of aspheric lenses for novel high efficient photovoltaic concentrator modules”, American Society for Precision Engineering, pp.582-585, 2004.
17. IEK Industry Service and Information Network, http://ieknet.itri.org.tw, “Introduction and development outlook for the optic-electric technology of the concentration photovoltaic”, Part I and Part II, Sep. 2009.
18. Salas V., Olias E., “Overview of the photovoltaic technology status and perspective in Spain”, Renewable and Sustainable Energy Reviews, 13, pp. 1049-1057, 2009.
19. Tzeng G. H., Shiau T. A., Lin C. Y., “Application of multicriteria decision making to the evaluation of new energy system development in Taiwan”, Energy, 17 , pp.983-992,1992.
20. Hein M., Meusel M., Baur C., Dimroth F., Lange G., Siefer G., “Characterisation of a 25 % high-efficiency Fresnel lens module with GaInP/GaInAs dual-junction concentrator solar cells”, 17th EU-PVSEC, pp.496-499, 2002.
21. Bett A. W., Baur C., Dimroth F., Lange G., Meusel M., Riesen S. V., “FlatconTM-modules: technology and characterization”, IEEE 3rd World Conference on Photovoltaics, pp.12-16, 2003.
22. Terao A., Mulligan W. P., Daroczi S. G., Pujol O. C., Verlinden P. J., Swanson R. M., “A mirror-less design for micro-concentrator modules”, Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE , pp.1416-1419, 2000.
23. Alvarez J. L., Cabrera J., Diaz V., Mateos C., Montoya N., Alonso J., “Industrialization of 1000X concentration photovoltaic modules”, SPIE, 6197, pp.61970I, 2006.
24. Royne A., Dey C.J., Mills D.R., “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Solar Energy Materials & Solar Cells, 86, pp. 451-483, 2005.
25. Khoukhi M., Maruyama S., “Theoretical approach of a flat plate solar collector with clear and low-iron glass covers taking into account the spectral absorption and emission within glass covers layer,” Renewable Energy, 30, pp. 1177-1194, 2005.
26. Zubi G., Bernal-Agustm J. L., Fracastoro G.V., “High concentration Photovoltaic systems applying III-V cells,” Renewable and Sustainale Energy Reviews, 13, pp. 2645-2652, 2009.
27. Juan-Luis Donmenech-Garret, “Cell behavior under different non-uniform temperature and radiation combined profiles using a two dimensional finite element model,” Solar Energy, 85, pp. 256-264, 2011.
28. 施天從、呂一璁, “聚焦型III-V族太陽能電池模組”,工程科技與教育學刊,第六卷,第二期。
29. 卜皓特, “聚光型太陽能模組流場之數值研究”,國立屏東科技大學車輛工程系碩士論文,民國99年。
30. 李聰瑞, “高效率聚光模組之研究”,國立成功大學機械工程學系博士論文,民國102年。
31. Incropera F.P., and DeWitt D.P., “Fundamentals of Heat and Mass Transfer,” John Wiley & Sons, 2002.
32. Comsol Multiphysics Heat Transfer Module User’s Guide 4.3b.
33. Comsol Multiphysics Structural Mechanics Module User’s Guide4.3b.
34. Lee C. J. and Lin J. F., “Lens designs by ray tracing analyses for high-performance reflection optical modules”, Journal of Optics, 12, pp.095501 1-9, 2010.
35. Lambda Research Corporation, USA, “TracePro software for Opto-Mechanical modeling User Manual ”, Release 6 Revision 3, 2.7–2.13, 2010.
36. Sun W., McBride J. W. and Hill M., “A new approach to characterising aspheric surfaces”, Precision. Engineering. 34, pp. 171-179, 2010.
37. Welford W. T., Winston R., “High collection nonimaging optics” Academic Press, ISBN-9780127428857, pp.53-163, 1989.
38. Terao A., Daroczi S. G., Coughlin S. J., Mulligan W. P., and Swanson R. M., “New developments on the flat-plate micro-concentrator module”, 3rd world Conference on Photovoltaic Energy Conversion, Osaka, Japan May 11-18, pp.861-864, 2003.
39. Brogren M., Nostell P. and Karlsson B., “Optical efficiency of a PV– thermal hybrid CPC module for high latitudes”, Sol. Energy 69, pp.173–185, 2000.
40. Nilsson J., “Optical design and characterization of solar concentrators for photovoltaics”, Report EBD-T-05/6, Lund University Faculty of Engineering LTH, chapter 6, pp.53–56, 2005.
41. Petritsch K., “Organic Solar Cell Architectures”, PhD Thesis , 2000.
42. GREEN M. A.著,曹昭陽、狄大衛、李秀文譯, “太陽電池工作原理、技術與系統應用”,五南圖書,第一章,2009。
43. “Tracker,” http://www.arimaeco.com/cn/tracker.html, Arimaeco, 2011.
校內:2018-07-26公開